Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuro Oncol ; 26(6): 1027-1041, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38285005

RESUMO

BACKGROUND: Glioblastoma (GBM) is characterized by chromosome 7 copy number gains, notably 7q34, potentially contributing to therapeutic resistance, yet the underlying oncogenes have not been fully characterized. Pertinently, the significance of long noncoding RNAs (lncRNAs) in this context has gained attention, necessitating further exploration. METHODS: FAM131B-AS2 was quantified in GBM samples and cells using qPCR. Overexpression and knockdown of FAM131B-AS2 in GBM cells were used to study its functions in vivo and in vitro. The mechanisms of FAM131B-AS2 were studied using RNA-seq, qPCR, Western blotting, RNA pull-down, coimmunoprecipitation assays, and mass spectrometry analysis. The phenotypic changes that resulted from FAM131B-AS2 variation were evaluated through CCK8 assay, EdU assay, comet assay, and immunofluorescence. RESULTS: Our analysis of 149 primary GBM patients identified FAM131B-AS2, a lncRNA located in the 7q34 region, whose upregulation predicts poor survival. Mechanistically, FAM131B-AS2 is a crucial regulator of the replication stress response, stabilizing replication protein A1 through recruitment of ubiquitin-specific peptidase 7 and activating the ataxia telangiectasia and rad3-related protein kinase pathway to protect single-stranded DNA from breakage. Furthermore, FAM131B-AS2 overexpression inhibited CD8+ T-cell infiltration, while FAM131B-AS2 inhibition activated the cGAS-STING pathway, increasing lymphocyte infiltration and improving the response to immune checkpoint inhibitors. CONCLUSIONS: FAM131B-AS2 emerges as a promising indicator for adjuvant therapy response and could also be a viable candidate for combined immunotherapies against GBMs.


Assuntos
Neoplasias Encefálicas , Glioblastoma , RNA Longo não Codificante , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/metabolismo , RNA Longo não Codificante/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Camundongos , Animais , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Variações do Número de Cópias de DNA , Peptidase 7 Específica de Ubiquitina/genética , Peptidase 7 Específica de Ubiquitina/metabolismo , Prognóstico , Progressão da Doença , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Células Tumorais Cultivadas , Replicação do DNA , Ensaios Antitumorais Modelo de Xenoenxerto , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Taxa de Sobrevida , Camundongos Nus , Linhagem Celular Tumoral , Masculino , Feminino
2.
Nat Commun ; 15(1): 4241, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762500

RESUMO

Glioblastoma multiforme (GBM) is a highly aggressive brain tumor characterized by invasive behavior and a compromised immune response, presenting treatment challenges. Surgical debulking of GBM fails to address its highly infiltrative nature, leaving neoplastic satellites in an environment characterized by impaired immune surveillance, ultimately paving the way for tumor recurrence. Tracking and eradicating residual GBM cells by boosting antitumor immunity is critical for preventing postoperative relapse, but effective immunotherapeutic strategies remain elusive. Here, we report a cavity-injectable bacterium-hydrogel superstructure that targets GBM satellites around the cavity, triggers GBM pyroptosis, and initiates innate and adaptive immune responses, which prevent postoperative GBM relapse in male mice. The immunostimulatory Salmonella delivery vehicles (SDVs) engineered from attenuated Salmonella typhimurium (VNP20009) seek and attack GBM cells. Salmonella lysis-inducing nanocapsules (SLINs), designed to trigger autolysis, are tethered to the SDVs, eliciting antitumor immune response through the intracellular release of bacterial components. Furthermore, SDVs and SLINs administration via intracavitary injection of the ATP-responsive hydrogel can recruit phagocytes and promote antigen presentation, initiating an adaptive immune response. Therefore, our work offers a local bacteriotherapy for stimulating anti-GBM immunity, with potential applicability for patients facing malignancies at a high risk of recurrence.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Recidiva Local de Neoplasia , Salmonella typhimurium , Glioblastoma/terapia , Glioblastoma/imunologia , Animais , Camundongos , Salmonella typhimurium/imunologia , Masculino , Recidiva Local de Neoplasia/prevenção & controle , Recidiva Local de Neoplasia/imunologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Humanos , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Piroptose , Imunidade Adaptativa , Imunidade Inata , Hidrogéis/química , Imunoterapia/métodos
3.
ACS Nano ; 18(13): 9511-9524, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38499440

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive and lethal form of human brain tumors. Dismantling the suppressed immune microenvironment is an effective therapeutic strategy against GBM; however, GBM does not respond to exogenous immunotherapeutic agents due to low immunogenicity. Manipulating the mitochondrial electron transport chain (ETC) elevates the immunogenicity of GBM, rendering previously immune-evasive tumors highly susceptible to immune surveillance, thereby enhancing tumor immune responsiveness and subsequently activating both innate and adaptive immunity. Here, we report a nanomedicine-based immunotherapeutic approach that targets the mitochondria in GBM cells by utilizing a Trojan-inspired nanovector (ABBPN) that can cross the blood-brain barrier. We propose that the synthetic photosensitizer IrPS can alter mitochondrial electron flow and concurrently interfere with mitochondrial antioxidative mechanisms by delivering si-OGG1 to GBM cells. Our synthesized ABBPN coloaded with IrPS and si-OGG1 (ISA) disrupts mitochondrial electron flow, which inhibits ATP production and induces mitochondrial DNA oxidation, thereby recruiting immune cells and endogenously activating intracranial antitumor immune responses. The results of our study indicate that strategies targeting the mitochondrial ETC have the potential to treat tumors with limited immunogenicity.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Barreira Hematoencefálica/patologia , Elétrons , Transporte Biológico , Neoplasias Encefálicas/genética , Mitocôndrias , Linhagem Celular Tumoral , Microambiente Tumoral
4.
Adv Mater ; 36(13): e2311109, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38127403

RESUMO

Glioblastoma multiforme (GBM) is notoriously resistant to immunotherapy due to its intricate immunosuppressive tumor microenvironment (TME). Dysregulated cholesterol metabolism is implicated in the TME and promotes tumor progression. Here, it is found that cholesterol levels in GBM tissues are abnormally high, and glioma-supportive macrophages (GSMs), an essential "cholesterol factory", demonstrate aberrantly hyperactive cholesterol metabolism and efflux, providing cholesterol to fuel GBM growth and induce CD8+ T cells exhaustion. Bioinformatics analysis confirms that high 7-dehydrocholesterol reductase (DHCR7) level in GBM tissues associates with increased cholesterol biosynthesis, suppressed tumoricidal immune response, and poor patient survival, and DHCR7 expression level is significantly elevated in GSMs. Therefore, an intracavitary sprayable nanoregulator (NR)-encased hydrogel system to modulate cholesterol metabolism of GSMs is reported. The degradable NR-mediated ablation of DHCR7 in GSMs effectively suppresses cholesterol supply and activates T-cell immunity. Moreover, the combination of Toll-like receptor 7/8 (TLR7/8) agonists significantly promotes GSM polarization to antitumor phenotypes and ameliorates the TME. Treatment with the hybrid system exhibits superior antitumor effects in the orthotopic GBM model and postsurgical recurrence model. Altogether, the findings unravel the role of GSMs DHCR7/cholesterol signaling in the regulation of TME, presenting a potential treatment strategy that warrants further clinical trials.


Assuntos
Neoplasias Encefálicas , Dissacarídeos , Glioblastoma , Glioma , Glucuronatos , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Linfócitos T CD8-Positivos/metabolismo , Hidrogéis/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Glioma/patologia , Macrófagos/metabolismo , Imunoterapia , Colesterol , Microambiente Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo
5.
ACS Nano ; 18(3): 2261-2278, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38207332

RESUMO

Sepsis, which is the most severe clinical manifestation of acute infection and has a mortality rate higher than that of cancer, represents a significant global public health burden. Persistent methicillin-resistant Staphylococcus aureus (MRSA) infection and further host immune paralysis are the leading causes of sepsis-associated death, but limited clinical interventions that target sepsis have failed to effectively restore immune homeostasis to enable complete eradication of MRSA. To restimulate anti-MRSA innate immunity, we developed CRV peptide-modified lipid nanoparticles (CRV/LNP-RNAs) for transient in situ programming of macrophages (MΦs). The CRV/LNP-RNAs enabled the delivery of MRSA-targeted chimeric antigen receptor (CAR) mRNA (SasA-CAR mRNA) and CASP11 (a key MRSA intracellular evasion target) siRNA to MΦs in situ, yielding CAR-MΦs with boosted bactericidal potency. Specifically, our results demonstrated that the engineered MΦs could efficiently phagocytose and digest MRSA intracellularly, preventing immune evasion by the "superbug" MRSA. Our findings highlight the potential of nanoparticle-enabled in vivo generation of CAR-MΦs as a therapeutic platform for multidrug-resistant (MDR) bacterial infections and should be confirmed in clinical trials.


Assuntos
Lipossomos , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Receptores de Antígenos Quiméricos , Sepse , Infecções Estafilocócicas , Animais , Camundongos , Receptores de Antígenos Quiméricos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , RNA Mensageiro , Antibacterianos/farmacologia , Macrófagos , Sepse/tratamento farmacológico , Lipídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa