Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Front Pharmacol ; 11: 615211, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381049

RESUMO

In-crystal fragment screening is a powerful tool to chemically probe the surfaces used by proteins to interact, and identify the chemical space worth exploring to design protein-protein inhibitors. A crucial prerequisite is the identification of a crystal form where the target area is exposed and accessible to be probed by fragments. Here we report a crystal form of the SARS-CoV-2 Receptor Binding Domain in complex with the CR3022 antibody where the ACE2 binding site on the Receptor Binding Domain is exposed and accessible. This crystal form of the complex is a valuable tool to develop antiviral molecules that could act by blocking the virus entry in cells.

2.
J Med Chem ; 63(14): 7559-7568, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32543856

RESUMO

Nowadays, it is possible to combine X-ray crystallography and fragment screening in a medium throughput fashion to chemically probe the surfaces used by proteins to interact and use the outcome of the screens to systematically design protein-protein inhibitors. To prove it, we first performed a bioinformatics analysis of the Protein Data Bank protein complexes, which revealed over 400 cases where the crystal lattice of the target in the free form is such that large portions of the interacting surfaces are free from lattice contacts and therefore accessible to fragments during soaks. Among the tractable complexes identified, we then performed single fragment crystal screens on two particular interesting cases: the Il1ß-ILR and p38α-TAB1 complexes. The result of the screens showed that fragments tend to bind in clusters, highlighting the small-molecule hotspots on the surface of the target protein. In most of the cases, the hotspots overlapped with the binding sites of the interacting proteins.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Interleucina-1beta/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Multimerização Proteica/efeitos dos fármacos , Receptores de Interleucina-1/metabolismo , Adamantano/análogos & derivados , Adamantano/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Bases de Dados de Proteínas , Humanos , Interleucina-1beta/química , Proteína Quinase 14 Ativada por Mitógeno/química , Ligação Proteica/efeitos dos fármacos , Receptores de Interleucina-1/química , Sulfonamidas/química , Sulfonamidas/metabolismo , Leveduras/química
3.
Mol Cell Biol ; 38(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29229647

RESUMO

p38α mitogen-activated protein kinase is essential to cellular homeostasis. Two principal mechanisms to activate p38α exist. The first relies on dedicated dual-specificity kinases such as mitogen-activated protein kinase kinase (MAP2K) 3 (MKK3) or 6 (MKK6), which activate p38α by phosphorylating Thr180 and Tyr182 within the activation segment. The second is by autophosphorylation of Thr180 and Tyr182 in cis, mediated by p38α binding the scaffold protein TAB1. The second mechanism occurs during myocardial ischemia, where it aggravates myocardial infarction. Based on the crystal structure of the p38α-TAB1 complex we replaced threonine 185 of p38α with glycine (T185G) to prevent an intramolecular hydrogen bond with Asp150 from being formed. This mutation did not interfere with TAB1 binding to p38α. However, it disrupted the consequent long-range effect of this binding event on the distal activation segment, releasing the constraint on Thr180 that oriented its hydroxyl for phosphotransfer. Based on assays performed in vitro and in vivo, the autoactivation of p38α(T185G) was disabled, while its ability to be activated by upstream MAP2Ks and to phosphorylate downstream substrates remained intact. Furthermore, myocardial cells expressing p38α(T185G) were resistant to injury. These findings reveal a mechanism to selectively disable p38α autoactivation and its consequences, which may ultimately circumvent the toxicity associated with strategies that inhibit p38α kinase activity under all circumstances, such as with ATP-competitive inhibitors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Ativação Enzimática , Células HEK293 , Humanos , MAP Quinase Quinase 3/metabolismo , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Treonina/metabolismo
4.
JCI Insight ; 3(16)2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30135318

RESUMO

Inhibiting MAPK14 (p38α) diminishes cardiac damage in myocardial ischemia. During myocardial ischemia, p38α interacts with TAB1, a scaffold protein, which promotes p38α autoactivation; active p38α (pp38α) then transphosphorylates TAB1. Previously, we solved the X-ray structure of the p38α-TAB1 (residues 384-412) complex. Here, we further characterize the interaction by solving the structure of the pp38α-TAB1 (residues 1-438) complex in the active state. Based on this information, we created a global knock-in (KI) mouse with substitution of 4 residues on TAB1 that we show are required for docking onto p38α. Whereas ablating p38α or TAB1 resulted in early embryonal lethality, the TAB1-KI mice were viable and had no appreciable alteration in their lymphocyte repertoire or myocardial transcriptional profile; nonetheless, following in vivo regional myocardial ischemia, infarction volume was significantly reduced and the transphosphorylation of TAB1 was disabled. Unexpectedly, the activation of myocardial p38α during ischemia was only mildly attenuated in TAB1-KI hearts. We also identified a group of fragments able to disrupt the interaction between p38α and TAB1. We conclude that the interaction between the 2 proteins can be targeted with small molecules. The data reveal that it is possible to selectively inhibit signaling downstream of p38α to attenuate ischemic injury.


Assuntos
Adamantano/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/patologia , Adamantano/análogos & derivados , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem Celular , Cristalografia por Raios X , Modelos Animais de Doenças , Feminino , Técnicas de Introdução de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 14 Ativada por Mitógeno/genética , Mutação , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/etiologia , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Domínios e Motivos de Interação entre Proteínas/genética , Traumatismo por Reperfusão/complicações
5.
Proteins ; 68(1): 13-25, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17393457

RESUMO

Salmonella typhimurium YegS is a protein conserved in many prokaryotes. Although the function of YegS is not definitively known, it has been annotated as a potential diacylglycerol or sphingosine kinase based on sequence similarity with eukaryotic enzymes of known function. To further characterize YegS, we report its purification, biochemical analysis, crystallization, and structure determination. The crystal structure of YegS reveals a two-domain fold related to bacterial polyphosphate/ATP NAD kinases, comprising a central cleft between an N-terminal alpha/beta domain and a C-terminal two-layer beta-sandwich domain; conserved structural features are consistent with nucleotide binding within the cleft. The N-terminal and C-terminal domains of YegS are however counter-rotated, relative to the polyphosphate/ATP NAD kinase archetype, such that the potential nucleotide binding site is blocked. There are also two Ca2+ binding sites and two hydrophobic clefts, one in each domain of YegS. Analysis of mutagenesis data from eukaryotic homologues of YegS suggest that the N-terminal cleft may bind activating lipids while the C-terminal cleft may bind the lipid substrate. Microcalorimetry experiments showed interaction between recombinant YegS and Mg2+, Ca2+, and Mn2+ ions, with a weaker interaction also observed with polyphosphates and ATP. However, biochemical assays showed that recombinant YegS is endogenously neither an active diacylglycerol nor sphingosine kinase. Thus although the bioinformatics analysis and structure of YegS indicate that many of the ligand recognition determinants for lipid kinase activity are present, the absence of such activity may be due to specificity for a different lipid substrate or the requirement for activation by an, as yet, undetermined mechanism. In this regard the specific interaction of YegS with the periplasmic chaperone OmpH, which we demonstrate from pulldown experiments, may be of significance. Such an interaction suggests that YegS can be translocated to the periplasm and directed to the outer-membrane, an environment that may be required for enzyme activity.


Assuntos
Proteínas de Bactérias/genética , Diacilglicerol Quinase/genética , Modelos Moleculares , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Salmonella typhimurium/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Varredura Diferencial de Calorimetria , Cristalização , Espectrometria de Massas , Dados de Sequência Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/química , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Análise de Sequência de DNA , Homologia Estrutural de Proteína
6.
Protein Sci ; 13(8): 2108-19, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15273308

RESUMO

Dehydroquinate synthase (DHQS) is the N-terminal domain of the pentafunctional AROM protein that catalyses steps 2 to 7 in the shikimate pathway in microbial eukaryotes. DHQS converts 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) to dehydroquinate in a reaction that includes alcohol oxidation, phosphate beta-elimination, carbonyl reduction, ring opening, and intramolecular aldol condensation. Kinetic analysis of the isolated DHQS domains with the AROM protein showed that for the substrate DAHP the difference in Km is less than a factor of 3, that the turnover numbers differed by 24%, and that the Km for NAD+ differs by a factor of 3. Isothermal titration calorimetry revealed that a second (inhibitory) site for divalent metal binding has an approximately 4000-fold increase in KD compared to the catalytic binding site. Inhibitor studies have suggested the enzyme could act as a simple oxidoreductase with several of the reactions occurring spontaneously, whereas structural studies have implied that DHQS participates in all steps of the reaction. Analysis of site-directed mutants experimentally test and support this latter hypothesis. Differential scanning calorimetry, circular dichroism spectroscopy, and molecular exclusion chromatography demonstrate that the mutant DHQS retain their secondary and quaternary structures and their ligand binding capacity. R130K has a 135-fold reduction in specific activity with DAHP and a greater than 1100-fold decrease in the kcat/Km ratio, whereas R130A is inactive.


Assuntos
Oxirredutases do Álcool/química , Substituição de Aminoácidos/genética , Hidroliases/química , Liases/química , Complexos Multienzimáticos/química , Fósforo-Oxigênio Liases/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Ácido Quínico/análogos & derivados , Transferases/química , Oxirredutases do Álcool/genética , Animais , Sítios de Ligação/genética , Fenômenos Biofísicos , Biofísica , Varredura Diferencial de Calorimetria , Humanos , Hidroliases/genética , Cinética , Liases/genética , Complexos Multienzimáticos/genética , Mutagênese Sítio-Dirigida/genética , Fósforo-Oxigênio Liases/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Estrutura Terciária de Proteína/genética , Ácido Quínico/química , Especificidade por Substrato/genética , Fosfatos Açúcares/química , Transferases/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa