Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 195(3): 1893-1905, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546393

RESUMO

Respiration provides energy, substrates, and precursors to support physiological changes of the fruit during climacteric ripening. A key substrate of respiration is oxygen that needs to be supplied to the fruit in a passive way by gas transfer from the environment. Oxygen gradients may develop within the fruit due to its bulky size and the dense fruit tissues, potentially creating hypoxia that may have a role in the spatial development of ripening. This study presents a 3D reaction-diffusion model using tomato (Solanum lycopersicum) fruit as a test subject, combining the multiscale fruit geometry generated from magnetic resonance imaging and microcomputed tomography with varying respiration kinetics and contrasting boundary resistances obtained through independent experiments. The model predicted low oxygen levels in locular tissue under atmospheric conditions, and the oxygen level was markedly lower upon scar occlusion, aligning with microsensor profiling results. The locular region was in a hypoxic state, leading to its low aerobic respiration with high CO2 accumulation by fermentative respiration, while the rest of the tissues remained well oxygenated. The model further revealed that the hypoxia is caused by a combination of diffusion resistances and respiration rates of the tissue. Collectively, this study reveals the existence of the respiratory gas gradients and its biophysical causes during tomato fruit ripening, providing richer information for future studies on localized endogenous ethylene biosynthesis and fruit ripening.


Assuntos
Frutas , Oxigênio , Solanum lycopersicum , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Solanum lycopersicum/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Oxigênio/metabolismo , Difusão , Modelos Biológicos , Respiração Celular , Imageamento por Ressonância Magnética/métodos , Microtomografia por Raio-X
2.
Proc Natl Acad Sci U S A ; 119(34): e2200759119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969777

RESUMO

Adaptive plasticity requires an integrated suite of functional responses to environmental variation, which can include social communication across life stages. Desert locusts (Schistocerca gregaria) exhibit an extreme example of phenotypic plasticity called phase polyphenism, in which a suite of behavioral and morphological traits differ according to local population density. Male and female juveniles developing at low population densities exhibit green- or sand-colored background-matching camouflage, while at high densities they show contrasting yellow and black aposematic patterning that deters predators. The predominant background colors of these phenotypes (green/sand/yellow) all depend on expression of the carotenoid-binding "Yellow Protein" (YP). Gregarious (high-density) adults of both sexes are initially pinkish, before a YP-mediated yellowing reoccurs upon sexual maturation. Yellow color is especially prominent in gregarious males, but the reason for this difference has been unknown since phase polyphenism was first described in 1921. Here, we use RNA interference to show that gregarious male yellowing acts as an intrasexual warning signal, which forms a multimodal signal with the antiaphrodisiac pheromone phenylacetonitrile (PAN) to prevent mistaken sexual harassment from other males during scramble mating in a swarm. Socially mediated reexpression of YP thus adaptively repurposes a juvenile signal that deters predators into an adult signal that deters undesirable mates. These findings reveal a previously underappreciated sexual dimension to locust phase polyphenism, and promote locusts as a model for investigating the relative contributions of natural versus sexual selection in the evolution of phenotypic plasticity.


Assuntos
Mimetismo Biológico , Gafanhotos , Animais , Feminino , Gafanhotos/genética , Masculino , Feromônios/metabolismo , Pigmentação , Densidade Demográfica , Caracteres Sexuais
3.
Plant Physiol ; 192(2): 1268-1288, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36691698

RESUMO

Maize (Zea mays) kernels are the largest cereal grains, and their endosperm is severely oxygen deficient during grain fill. The causes, dynamics, and mechanisms of acclimation to hypoxia are minimally understood. Here, we demonstrate that hypoxia develops in the small, growing endosperm, but not the nucellus, and becomes the standard state, regardless of diverse structural and genetic perturbations in modern maize (B73, popcorn, sweet corn), mutants (sweet4c, glossy6, waxy), and non-domesticated wild relatives (teosintes and Tripsacum species). We also uncovered an interconnected void space at the chalazal pericarp, providing superior oxygen supply to the placental tissues and basal endosperm transfer layer. Modeling indicated a very high diffusion resistance inside the endosperm, which, together with internal oxygen consumption, could generate steep oxygen gradients at the endosperm surface. Manipulation of oxygen supply induced reciprocal shifts in gene expression implicated in controlling mitochondrial functions (23.6 kDa Heat-Shock Protein, Voltage-Dependent Anion Channel 2) and multiple signaling pathways (core hypoxia genes, cyclic nucleotide metabolism, ethylene synthesis). Metabolite profiling revealed oxygen-dependent shifts in mitochondrial pathways, ascorbate metabolism, starch synthesis, and auxin degradation. Long-term elevated oxygen supply enhanced the rate of kernel development. Altogether, evidence here supports a mechanistic framework for the establishment of and acclimation to hypoxia in the maize endosperm.


Assuntos
Amido , Zea mays , Gravidez , Feminino , Humanos , Zea mays/metabolismo , Amido/metabolismo , Placenta/metabolismo , Endosperma/metabolismo , Oxigênio/metabolismo , Hipóxia/metabolismo
4.
Crit Rev Food Sci Nutr ; : 1-25, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39081017

RESUMO

Fruit and vegetables (F&V) are vastly complicated products with highly diverse chemical and structural characteristics. Advanced imaging techniques either combine imaging with spectral information or can provide excellent tissue penetration, and enable the possibility to target, visualize and even qualify the chemical and physical (structural) heterogeneity within F&V. In this review, visible and/or near infrared hyperspectral imaging, Fourier transform infrared microspectroscopic imaging, Raman imaging, X-ray and magnetic resonance imaging to reveal chemical and structural information in a spatial context of F&V at the macro- (entire products), meso- (tissues), and micro- (individual cells) scales are comprehensively summarized. In addition, their basic concepts and operational procedures, particularly sample preparation and instrumental parameter adjustments, are addressed. Finally, future challenges and perspectives of these techniques are put forward. These imaging techniques are powerful tools to assess the biochemical and structural heterogeneity of F&V. Cost reduction, sensor fusion and data sharing platforms are future trends. More emphasis on aspects of knowledge and extension at the level of academia and research, especially on how to select techniques, choose operational parameters and prepare samples, are important to overcome barriers for the wider adoption of these techniques to improve the evaluation of F&V quality.


Hyperspectral imaging reveals chemical heterogeneity of fruit and vegetables.Imaging techniques provide spatial insights in fruit and vegetables at multiple scales.Future trends are cost reduction, sensor fusion and data sharing.Instrumental adjustment and sample preparation should receive more attention.

5.
J Exp Bot ; 74(20): 6321-6330, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37317945

RESUMO

Fruit quality traits are determined to a large extent by their metabolome. The metabolite content of climacteric fruit changes drastically during ripening and post-harvest storage, and has been investigated extensively. However, the spatial distribution of metabolites and how it changes in time has received much less attention as fruit are usually considered as homogenous plant organs. Yet, spatio-temporal changes of starch, which is hydrolyzed during ripening, has been used for a long time as a ripening index. As vascular transport of water, and hence convective transport of metabolites, slows down in mature fruit and even stalls after detachment, spatio-temporal changes in their concentration are probably affected by diffusive transport of gaseous molecules that act as substrate (O2), inhibitor (CO2), or regulator (ethylene and NO) of the metabolic pathways that are active during climacteric ripening. In this review, we discuss such spatio-temporal changes of the metabolome and how they are affected by transport of metabolic gases and gaseous hormones. As there are currently no techniques available to measure the metabolite distribution repeatedly by non-destructive means, we introduce reaction-diffusion models as an in silico tool to compute it. We show how the different components of such a model can be integrated and used to better understand the role of spatio-temporal changes of the metabolome in ripening and post-harvest storage of climacteric fruit that is detached from the plant, and discuss future research needs.


Assuntos
Climatério , Frutas , Frutas/metabolismo , Etilenos/metabolismo , Metaboloma , Gases/metabolismo
6.
J Exp Bot ; 74(14): 4125-4142, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37083863

RESUMO

Chloroplasts movement within mesophyll cells in C4 plants is hypothesized to enhance the CO2 concentrating mechanism, but this is difficult to verify experimentally. A three-dimensional (3D) leaf model can help analyse how chloroplast movement influences the operation of the CO2 concentrating mechanism. The first volumetric reaction-diffusion model of C4 photosynthesis that incorporates detailed 3D leaf anatomy, light propagation, ATP and NADPH production, and CO2, O2 and bicarbonate concentration driven by diffusional and assimilation/emission processes was developed. It was implemented for maize leaves to simulate various chloroplast movement scenarios within mesophyll cells: the movement of all mesophyll chloroplasts towards bundle sheath cells (aggregative movement) and movement of only those of interveinal mesophyll cells towards bundle sheath cells (avoidance movement). Light absorbed by bundle sheath chloroplasts relative to mesophyll chloroplasts increased in both cases. Avoidance movement decreased light absorption by mesophyll chloroplasts considerably. Consequently, total ATP and NADPH production and net photosynthetic rate increased for aggregative movement and decreased for avoidance movement compared with the default case of no chloroplast movement at high light intensities. Leakiness increased in both chloroplast movement scenarios due to the imbalance in energy production and demand in mesophyll and bundle sheath cells. These results suggest the need to design strategies for coordinated increases in electron transport and Rubisco activities for an efficient CO2 concentrating mechanism at very high light intensities.


Assuntos
Dióxido de Carbono , Zea mays , Dióxido de Carbono/metabolismo , NADP/metabolismo , Fotossíntese , Cloroplastos/metabolismo , Folhas de Planta , Células do Mesofilo , Trifosfato de Adenosina/metabolismo
7.
PLoS Comput Biol ; 18(1): e1009610, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35020716

RESUMO

Dynamic models based on non-linear differential equations are increasingly being used in many biological applications. Highly informative dynamic experiments are valuable for the identification of these dynamic models. The storage of fresh fruit and vegetables is one such application where dynamic experimentation is gaining momentum. In this paper, we construct optimal O2 and CO2 gas input profiles to estimate the respiration and fermentation kinetics of pear fruit. The optimal input profiles, however, depend on the true values of the respiration and fermentation parameters. Locally optimal design of input profiles, which uses a single initial guess for the parameters, is the traditional method to deal with this issue. This method, however, is very sensitive to the initial values selected for the model parameters. Therefore, we present a robust experimental design approach that can handle uncertainty on the model parameters.


Assuntos
Respiração Celular/fisiologia , Fermentação/fisiologia , Frutas , Modelos Biológicos , Verduras , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Biologia Computacional , Frutas/química , Frutas/metabolismo , Frutas/fisiologia , Cinética , Oxigênio/análise , Oxigênio/metabolismo , Verduras/química , Verduras/metabolismo , Verduras/fisiologia
8.
Crit Rev Food Sci Nutr ; 63(30): 10283-10302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35647708

RESUMO

Mechanical damage of fresh fruit occurs throughout the postharvest supply chain leading to poor consumer acceptance and marketability. In this review, the mechanisms of damage development are discussed first. Mathematical modeling provides advanced ways to describe and predict the deformation of fruit with arbitrary geometry, which is important to understand their mechanical responses to external forces. Also, the effects of damage at the cellular and molecular levels are discussed as this provides insight into fruit physiological responses to damage. Next, direct measurement methods for damage including manual evaluation, optical detection, magnetic resonance imaging, and X-ray computed tomography are examined, as well as indirect methods based on physiochemical indexes. Also, methods to measure fruit susceptibility to mechanical damage based on the bruise threshold and the amount of damage per unit of impact energy are reviewed. Further, commonly used external and interior packaging and their applications in reducing damage are summarized, and a recent biomimetic approach for designing novel lightweight packaging inspired by the fruit pericarp. Finally, future research directions are provided.HIGHLIGHTSMathematical modeling has been increasingly used to calculate damage to fruit.Cell and molecular mechanisms response to fruit damage is an under-explored area.Susceptibility measurement of different mechanical forces has received attention.Customized design of reusable and biodegradable packaging is a hot topic of research.


Assuntos
Frutas , Fenômenos Mecânicos , Frutas/química
9.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37761982

RESUMO

DNA-based enzymes, or DNAzymes, are single-stranded DNA sequences with the ability to catalyze various chemical reactions, including the cleavage of the bond between two RNA nucleotides. Lately, an increasing interest has been observed in these RNA-cleaving DNAzymes in the biosensing and therapeutic fields for signal generation and the modulation of gene expression, respectively. Additionally, multiple efforts have been made to study the effects of the reaction environment and the sequence of the catalytic core on the conversion of the substrate into product. However, most of these studies have only reported alterations of the general reaction course, but only a few have focused on how each individual reaction step is affected. In this work, we present for the first time a mathematical model that describes and predicts the reaction of the 10-23 RNA-cleaving DNAzyme. Furthermore, the model has been employed to study the effect of temperature, magnesium cations and shorter substrate-binding arms of the DNAzyme on the different kinetic rate constants, broadening the range of conditions in which the model can be exploited. In conclusion, this work depicts the prospects of such mathematical models to study and anticipate the course of a reaction given a particular environment.


Assuntos
DNA Catalítico , Catálise , Domínio Catalítico , DNA de Cadeia Simples/genética , RNA/genética
10.
New Phytol ; 232(5): 2043-2056, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34480758

RESUMO

Climacteric ripening of tomato fruit is initiated by a characteristic surge of the production rate of ethylene, accompanied by an increase in respiration rate. As both activities consume O2 and produce CO2 , gas concentration gradients develop in the fruit that cause diffusive transport. This may, in turn, affect respiration and ethylene biosynthesis. Gas diffusion in fruit depends on the amount and connectivity of cells and intercellular spaces in 3D. We investigated micromorphological changes in different tomato tissues during development and ripening by visualizing cells and pores based on high-resolution micro-computed tomography, and computed effective O2 diffusivity coefficients based on microstructural features of the tissues. We demonstrated that mesocarp and septa tissues have larger cells but small and more disconnected pores than the placenta and columella, resulting in relatively lower effective O2 diffusivity coefficients. Cell disintegration occurred in the mesocarp and septa during ripening, indicating lysigenous air pore formation and resulting in a gradual increase of the effective O2 diffusivity. The results suggest that hypoxic conditions caused by the increasing size and, hence, diffusion resistance of the growing fruit may induce an increase of tissue porosity that results in a greatly enhanced O2 diffusivity and, thus, helps to alleviate them.


Assuntos
Solanum lycopersicum , Etilenos , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/metabolismo , Oxigênio/metabolismo , Proteínas de Plantas/metabolismo , Microtomografia por Raio-X
11.
J Exp Bot ; 71(3): 997-1009, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31616944

RESUMO

Computational tools that allow in silico analysis of the role of cell growth and division on photosynthesis are scarce. We present a freely available tool that combines a virtual leaf tissue generator and a two-dimensional microscale model of gas transport during C3 photosynthesis. A total of 270 mesophyll geometries were generated with varying degrees of growth anisotropy, growth extent, and extent of schizogenous airspace formation in the palisade mesophyll. The anatomical properties of the virtual leaf tissue and microscopic cross-sections of actual leaf tissue of tomato (Solanum lycopersicum L.) were statistically compared. Model equations for transport of CO2 in the liquid phase of the leaf tissue were discretized over the geometries. The virtual leaf tissue generator produced a leaf anatomy of tomato that was statistically similar to real tomato leaf tissue. The response of photosynthesis to intercellular CO2 predicted by a model that used the virtual leaf tissue geometry compared well with measured values. The results indicate that the light-saturated rate of photosynthesis was influenced by interactive effects of extent and directionality of cell growth and degree of airspace formation through the exposed surface of mesophyll per leaf area. The tool could be used further in investigations of improving photosynthesis and gas exchange in relation to cell growth and leaf anatomy.


Assuntos
Modelos Biológicos , Fotossíntese , Folhas de Planta/metabolismo , Algoritmos , Anisotropia , Simulação por Computador , Solanum lycopersicum , Células do Mesofilo , Folhas de Planta/citologia
12.
J Sci Food Agric ; 100(14): 5207-5221, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32520412

RESUMO

BACKGROUND: The ripening of mango involves changes in texture, flavor, and color, affecting the quality of the fruit. Previous studies have investigated the physiology on the evolution of quality during ripening but only a few have looked at microstructural changes during ripening. None of them has provided an insight into the relationhip between 3-D microstructure and the evolution of quality during ripening. As the 3-D microstructure of fruit tissue determines its mechanical and gas-transport properties, it is likely to affect fruit texture, respiratory metabolism, and other ripening processes. RESULTS: The present study focuses on the role of 3-D microstructural changes in relation to quality changes during mango ripening. Microstructural imaging using X-ray micro-computed tomography suggested the incidence of cell leakage, which was confirmed by the measurement of electrolyte leakage from the fruit peel. Due to cell leakage, porosity, pore connectivity, and pore local diameter were decreased whereas the tissue local diameter and pore specific area were increased. The decline in respiration and respiratory quotient during ripening followed the microstructural changes observed. Meanwhile, changes in aroma were observed such as a decrease in monoterpenes and an increase in esters and other fermentative metabolites. CONCLUSION: Overall, the results provide a complete, integrated picture of microstructural changes during ripening accompanying the evolution of fruit quality, suggesting functional relationships between the two. © 2020 Society of Chemical Industry.


Assuntos
Frutas/química , Imageamento Tridimensional/métodos , Mangifera/crescimento & desenvolvimento , Microtomografia por Raio-X/métodos , Cor , Frutas/crescimento & desenvolvimento , Mangifera/química , Odorantes/análise
13.
New Phytol ; 223(2): 619-631, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31002400

RESUMO

Methods using gas exchange measurements to estimate respiration in the light (day respiration Rd ) make implicit assumptions about reassimilation of (photo)respired CO2 ; however, this reassimilation depends on the positions of mitochondria. We used a reaction-diffusion model without making these assumptions to analyse datasets on gas exchange, chlorophyll fluorescence and anatomy for tomato leaves. We investigated how Rd values obtained by the Kok and the Yin methods are affected by these assumptions and how those by the Laisk method are affected by the positions of mitochondria. The Kok method always underestimated Rd . Estimates of Rd by the Yin method and by the reaction-diffusion model agreed only for nonphotorespiratory conditions. Both the Yin and Kok methods ignore reassimilation of (photo)respired CO2 , and thus underestimated Rd for photorespiratory conditions, but this was less so in the Yin than in the Kok method. Estimates by the Laisk method were affected by assumed positions of mitochondria. It did not work if mitochondria were in the cytosol between the plasmamembrane and the chloroplast envelope. However, mitochondria were found to be most likely between the tonoplast and chloroplasts. Our reaction-diffusion model effectively estimates Rd , enlightens the dependence of Rd estimates on reassimilation and clarifies (dis)advantages of existing methods.


Assuntos
Dióxido de Carbono/metabolismo , Luz , Modelos Biológicos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Respiração Celular/efeitos da radiação , Simulação por Computador , Difusão , Células do Mesofilo/metabolismo , Células do Mesofilo/efeitos da radiação
14.
Soft Matter ; 15(16): 3362-3378, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30932127

RESUMO

Bruise damage in fruit results from cell wall failure and inter-cellular separation. Despite the importance of the micro-mechanics of plant tissue with respect to its integrity, it remains largely unquantified and poorly understood, due to many difficulties during experimental characterization. In this article, a 3D micro-mechanical plant tissue model that is able to model cell rupture and inter-cellular debonding and thus provide more insight into the micro-mechanics was developed. The model is based on the discrete element method (DEM) and represents the tissue as a mass-spring system. Each plant cell is represented as a deformable visco-elastoplastic triangulated mesh under turgor pressure. To model cell wall rupture, it is assumed that a spring connection in the wall breaks at a certain critical stretch ratio and that a ruptured cell is turgorless. The inter-cellular contact model assumes brittle fracture between a cell's node and an adjacent cell's triangle when their bond distance exceeds a critical value. A high-speed tomato fruit cell compression test was simulated and the modelled force-strain curve compares well with the experimental data, including for strains above the elastic limit. By varying the shape of the cell in the compression simulation it was shown that the force-strain curve is highly dependent on the cell shape and thus parameter fitting procedures based on a spherical cell model will be inaccurate. Furthermore, the wall stiffness and thickness showed a positive linear relationship with the force at cell bursting. Besides simulating compression tests of single cells, we also simulated tensile and compression tests on small tissue specimens. Realistic tissue structures of tomato mesocarp tissue were generated by a novel method using DEM simulations of deformable cells in a shrinking cylinder. The cell area, volume and anisotropy distributions of the virtual tissue compared well with micro-CT images of real tomato mesocarp tissue (normalized root mean square error values smaller than 3%). The tissue compression and tensile test simulations demonstrated an important influence of the inter-cellular bonding energy and tissue porosity on the tissue failure characteristics and elastic modulus.


Assuntos
Fenômenos Mecânicos , Modelos Biológicos , Solanum lycopersicum/citologia , Fenômenos Biomecânicos , Parede Celular/metabolismo
15.
J Exp Bot ; 69(8): 2049-2060, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29394374

RESUMO

The respiration rate of plant tissues decreases when the amount of available O2 is reduced. There is, however, a debate on whether the respiration rate is controlled either by diffusion limitation of oxygen or through regulatory processes at the level of the transcriptome. We used experimental and modelling approaches to demonstrate that both diffusion limitation and metabolic regulation affect the response of respiration of bulky plant organs such as fruit to reduced O2 levels in the surrounding atmosphere. Diffusion limitation greatly affects fruit respiration at high temperature, but at low temperature respiration is reduced through a regulatory process, presumably a response to a signal generated by a plant oxygen sensor. The response of respiration to O2 is time dependent and is highly sensitive, particularly at low O2 levels in the surrounding atmosphere. Down-regulation of the respiration at low temperatures may save internal O2 and relieve hypoxic conditions in the fruit.


Assuntos
Frutas/metabolismo , Pyrus/metabolismo , Dióxido de Carbono/metabolismo , Respiração Celular , Regulação para Baixo , Modelos Biológicos , Oxigênio/metabolismo , Temperatura
16.
Microb Cell Fact ; 17(1): 198, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30577858

RESUMO

BACKGROUND: The Gram-positive Streptomyces lividans TK24 is an attractive host for heterologous protein production because of its high capability to secrete proteins-which favors correct folding and facilitates downstream processing-as well as its acceptance of methylated DNA and its low endogeneous protease activity. However, current inconsistencies in protein yields urge for a deeper understanding of the burden of heterologous protein production on the cell. In the current study, transcriptomics and [Formula: see text]-based fluxomics were exploited to uncover gene expression and metabolic flux changes associated with heterologous protein production. The Rhodothermus marinus thermostable cellulase A (CelA)-previously shown to be successfully overexpressed in S. lividans-was taken as an example protein. RESULTS: RNA-seq and [Formula: see text]-based metabolic flux analysis were performed on a CelA-producing and an empty-plasmid strain under the same conditions. Differential gene expression, followed by cluster analysis based on co-expression and co-localization, identified transcriptomic responses related to secretion-induced stress and DNA damage. Furthermore, the OsdR regulon (previously associated with hypoxia, oxidative stress, intercellular signaling, and morphological development) was consistently upregulated in the CelA-producing strain and exhibited co-expression with isoenzymes from the pentose phosphate pathway linked to secondary metabolism. Increased expression of these isoenzymes matches to increased fluxes in the pentose phosphate pathway. Additionally, flux maps of the central carbon metabolism show increased flux through the tricarboxylic acid cycle in the CelA-producing strain. Redirection of fluxes in the CelA-producing strain leads to higher production of NADPH, which can only partly be attributed to increased secretion. CONCLUSIONS: Transcriptomic and fluxomic changes uncover potential new leads for targeted strain improvement strategies which may ease the secretion stress and metabolic burden associated with heterologous protein synthesis and secretion, and may help create a more consistently performing S. lividans strain. Yet, links to secondary metabolism and redox balancing should be further investigated to fully understand the S. lividans metabolome under heterologous protein production.


Assuntos
Família Multigênica/genética , Biossíntese de Proteínas/genética , Streptomyces lividans/metabolismo , Transcriptoma/genética
17.
J Food Sci Technol ; 55(1): 233-243, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29358815

RESUMO

A model based on enzyme kinetics was developed to predict differences in postmortem pH change in beef muscles as affected by cooling rate. For the calibration and validation of the model, pH and temperature measurements were conducted at different positions in M. biceps femoris following conventional carcass cooling or faster cooling of the muscle after hot boning. The glycogen conversion, and, hence, the pH fall, was observed to significantly vary with position and cooling regime but only during the initial hours of cooling. Comparison of the cooling regimes indicated that fast cooling following hot boning avoids heat shortening induced by the combined effect of high temperature and low pH.

18.
Proteomics ; 17(1-2)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27957804

RESUMO

Since the genome of Solanum lycopersicum L. was published in 2012, some studies have explored its proteome although with a limited depth. In this work, we present an extended characterization of the proteome of the tomato pericarp at its ripe red stage. Fractionation of tryptic peptides generated from pericarp proteins by off-line high-pH reverse-phase phase chromatography in combination with LC-MS/MS analysis on a Fisher Scientific Q Exactive and a Sciex Triple-TOF 6600 resulted in the identification of 8588 proteins with a 1% FDR both at the peptide and protein levels. Proteins were mapped through GO and KEGG databases and a large number of the identified proteins were associated with cytoplasmic organelles and metabolic pathways categories. These results constitute one of the most extensive proteome datasets of tomato so far and provide an experimental confirmation of the existence of a high number of theoretically predicted proteins. All MS data are available in the ProteomeXchange repository with the dataset identifiers PXD004947 and PXD004932.


Assuntos
Frutas/metabolismo , Proteoma/metabolismo , Solanum lycopersicum/metabolismo , Cromatografia Líquida , Proteínas de Plantas/metabolismo , Proteômica , Espectrometria de Massas em Tandem
19.
Proteomics ; 17(21)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28922568

RESUMO

Quantitative proteomics methods have emerged as powerful tools for measuring protein expression changes at the proteome level. Using MS-based approaches, it is now possible to routinely quantify thousands of proteins. However, prefractionation of the samples at the protein or peptide level is usually necessary to go deep into the proteome, increasing both MS analysis time and technical variability. Recently, a new MS acquisition method named SWATH is introduced with the potential to provide good coverage of the proteome as well as a good measurement precision without prior sample fractionation. In contrast to shotgun-based MS however, a library containing experimental acquired spectra is necessary for the bioinformatics analysis of SWATH data. In this study, spectral libraries for two widely used models are built to study crop ripening or animal embryogenesis, Solanum lycopersicum (tomato) and Drosophila melanogaster, respectively. The spectral libraries comprise fragments for 5197 and 6040 proteins for S. lycopersicum and D. melanogaster, respectively, and allow reproducible quantification for thousands of peptides per MS analysis. The spectral libraries and all MS data are available in the MassIVE repository with the dataset identifiers MSV000081074 and MSV000081075 and the PRIDE repository with the dataset identifiers PXD006493 and PXD006495.


Assuntos
Drosophila melanogaster/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Solanum lycopersicum/metabolismo , Espectrometria de Massas em Tandem/métodos , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Biblioteca de Peptídeos , Padrões de Referência
20.
BMC Plant Biol ; 17(1): 77, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28431510

RESUMO

BACKGROUND: Superficial scald is a physiological disorder of apple fruit characterized by sunken, necrotic lesions appearing after prolonged cold storage, although initial injury occurs much earlier in the storage period. To determine the degree to which the transition to cell death is an active process and specific metabolism involved, untargeted metabolic and transcriptomic profiling was used to follow metabolism of peel tissue over 180 d of cold storage. RESULTS: The metabolome and transcriptome of peel destined to develop scald began to diverge from peel where scald was controlled using antioxidant (diphenylamine; DPA) or rendered insensitive to ethylene using 1-methylcyclopropene (1-MCP) beginning between 30 and 60 days of storage. Overall metabolic and transcriptomic shifts, representing multiple pathways and processes, occurred alongside α-farnesene oxidation and, later, methanol production alongside symptom development. CONCLUSIONS: Results indicate this form of peel necrosis is a product of an active metabolic transition involving multiple pathways triggered by chilling temperatures at cold storage inception rather than physical injury. Among multiple other pathways, enhanced methanol and methyl ester levels alongside upregulated pectin methylesterases are unique to peel that is developing scald symptoms similar to injury resulting from mechanical stress and herbivory in other plants.


Assuntos
Resposta ao Choque Frio , Frutas/metabolismo , Malus/metabolismo , Doenças das Plantas , Hidrolases de Éster Carboxílico/genética , Temperatura Baixa , Ésteres/metabolismo , Armazenamento de Alimentos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Malus/enzimologia , Malus/genética , Metaboloma , Metanol/metabolismo , Doenças das Plantas/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa