RESUMO
Radiation (RT) is critical to the treatment of high-grade gliomas (HGGs) but cures remain elusive. The BRAF mutation V600E is critical to the pathogenesis of 10-20% of pediatric gliomas, and a small proportion of adult HGGs. Here we aim to determine whether PLX4720, a specific BRAF V600E inhibitor, enhances the activity of RT in human HGGs in vitro and in vivo. Patient-derived HGG lines harboring wild-type BRAF or BRAF V600E were assessed in vitro to determine IC50 values, cell cycle arrest, apoptosis and senescence and elucidate mechanisms of combinatorial activity. A BRAF V600E HGG intracranial xenograft mouse model was used to evaluate in vivo combinatorial efficacy of PLX4720+RT. Tumors were harvested for immunohistochemistry to quantify cell cycle arrest and apoptosis. RT+PLX4720 exhibited greater anti-tumor effects than either monotherapy in BRAF V600E but not in BRAF WT lines. In vitro studies showed increased Annexin V and decreased S phase cells in BRAF V600E gliomas treated with PLX4720+RT, but no significant changes in ß-galactosidase levels. In vivo, concurrent and sequential PLX4720+RT each significantly prolonged survival compared to monotherapies, in the BRAF V600E HGG model. Immunohistochemistry of in vivo tumors demonstrated that PLX4720+RT decreased Ki-67 and phospho-MAPK, and increased γH2AX and p21 compared to control mice. BRAF V600E inhibition enhances radiation-induced cytotoxicity in BRAF V600E-mutated HGGs, in vitro and in vivo, effects likely mediated by apoptosis and cell cycle, but not senescence. These studies provide the pre-clinical rationale for clinical trials of concurrent radiotherapy and BRAF V600E inhibitors.
Assuntos
Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/terapia , Quimiorradioterapia , Raios gama , Indóis/farmacologia , Mutação/genética , Proteínas Proto-Oncogênicas B-raf/genética , Sulfonamidas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glioma , Humanos , Técnicas Imunoenzimáticas , Camundongos , Camundongos Nus , Gradação de Tumores , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Despite being the leading cause of cancer-related childhood mortality, pediatric gliomas have been relatively understudied, and the repurposing of immunotherapies has not been successful. Whole-transcriptome sequencing, single-cell sequencing, and sequential multiplex immunofluorescence were used to identify an immunotherapeutic strategy that could be applied to multiple preclinical glioma models. MAPK-driven pediatric gliomas have a higher IFN signature relative to other molecular subgroups. Single-cell sequencing identified an activated and cytotoxic microglia (MG) population designated MG-Act in BRAF-fused, MAPK-activated pilocytic astrocytoma (PA), but not in high-grade gliomas or normal brain. T cell immunoglobulin and mucin domain 3 (TIM3) was expressed on MG-Act and on the myeloid cells lining the tumor vasculature but not normal brain vasculature. TIM3 expression became upregulated on immune cells in the PA microenvironment, and anti-TIM3 reprogrammed ex vivo immune cells from human PAs to a proinflammatory cytotoxic phenotype. In a genetically engineered murine model of MAPK-driven, low-grade gliomas, anti-TIM3 treatment increased median survival over IgG- and anti-PD-1-treated mice. Single-cell RNA-Seq data during the therapeutic window of anti-TIM3 revealed enrichment of the MG-Act population. The therapeutic activity of anti-TIM3 was abrogated in mice on the CX3CR1 MG-KO background. These data support the use of anti-TIM3 in clinical trials of pediatric low-grade, MAPK-driven gliomas.
Assuntos
Astrocitoma , Neoplasias Encefálicas , Receptor Celular 2 do Vírus da Hepatite A , Proteínas Proto-Oncogênicas B-raf , Receptor Celular 2 do Vírus da Hepatite A/genética , Receptor Celular 2 do Vírus da Hepatite A/imunologia , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas B-raf/genética , Astrocitoma/genética , Astrocitoma/imunologia , Astrocitoma/patologia , Astrocitoma/terapia , Astrocitoma/metabolismo , Criança , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Feminino , Microambiente Tumoral/imunologia , Masculino , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Proteínas de Neoplasias/metabolismo , Glioma/imunologia , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Glioma/terapiaRESUMO
Surgery is the mainstay of treatment for meningioma, the most common primary intracranial tumor, but improvements in meningioma risk stratification are needed and indications for postoperative radiotherapy are controversial. Here we develop a targeted gene expression biomarker that predicts meningioma outcomes and radiotherapy responses. Using a discovery cohort of 173 meningiomas, we developed a 34-gene expression risk score and performed clinical and analytical validation of this biomarker on independent meningiomas from 12 institutions across 3 continents (N = 1,856), including 103 meningiomas from a prospective clinical trial. The gene expression biomarker improved discrimination of outcomes compared with all other systems tested (N = 9) in the clinical validation cohort for local recurrence (5-year area under the curve (AUC) 0.81) and overall survival (5-year AUC 0.80). The increase in AUC compared with the standard of care, World Health Organization 2021 grade, was 0.11 for local recurrence (95% confidence interval 0.07 to 0.17, P < 0.001). The gene expression biomarker identified meningiomas benefiting from postoperative radiotherapy (hazard ratio 0.54, 95% confidence interval 0.37 to 0.78, P = 0.0001) and suggested postoperative management could be refined for 29.8% of patients. In sum, our results identify a targeted gene expression biomarker that improves discrimination of meningioma outcomes, including prediction of postoperative radiotherapy responses.
Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Biomarcadores , Perfilação da Expressão Gênica , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/radioterapia , Neoplasias Meníngeas/patologia , Meningioma/genética , Meningioma/radioterapia , Meningioma/patologia , Recidiva Local de Neoplasia/patologia , Estudos ProspectivosRESUMO
We have shown previously that blockade of epidermal growth factor receptor (EGFR) cooperates with a pan-selective inhibitor of phosphoinositide-3-kinase (PI3K) in EGFR-driven glioma. In this communication, we tested EGFR-driven glioma differing in PTEN status, treating with the EGFR inhibitor erlotinib and a novel dual inhibitor of PI3Kalpha and mTOR (PI-103). Erlotinib blocked proliferation only in PTEN(wt) cells expressing EGFR. Although erlotinib monotherapy showed little effect in PTEN(mt) glioma, PI-103 greatly augmented the antiproliferative efficacy of erlotinib in this setting. To address the importance of PI3K blockade, we showed in PTEN(mt) glioma that combining PI-103 and erlotinib was superior to either monotherapy or to therapy combining erlotinib with either rapamycin (an inhibitor of mTOR) or PIK-90 (an inhibitor of PI3Kalpha). These experiments show that a dual inhibitor of PI3Kalpha and mTOR augments the activity of EGFR blockade, offering a mechanistic rationale for targeting EGFR, PI3Kalpha, and mTOR in the treatment of EGFR-driven, PTEN-mutant glioma.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Furanos/farmacologia , Glioma/tratamento farmacológico , PTEN Fosfo-Hidrolase/genética , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Quinases/efeitos dos fármacos , Piridinas/farmacologia , Pirimidinas/farmacologia , Quinazolinas/farmacologia , Ciclo Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Cloridrato de Erlotinib , Furanos/administração & dosagem , Glioma/genética , Glioma/patologia , Humanos , Piridinas/administração & dosagem , Pirimidinas/administração & dosagem , Quinazolinas/administração & dosagem , Serina-Treonina Quinases TOR , Resultado do Tratamento , Células Tumorais CultivadasRESUMO
Identifying cellular programs that drive cancers to be stem-like and treatment resistant is critical to improving outcomes in patients. Here, we demonstrate that constitutive extracellular signal-regulated kinase 1/2 (ERK1/2) activation sustains a stem-like state in glioblastoma (GBM), the most common primary malignant brain tumor. Pharmacological inhibition of ERK1/2 activation restores neurogenesis during murine astrocytoma formation, inducing neuronal differentiation in tumorspheres. Constitutive ERK1/2 activation globally regulates miRNA expression in murine and human GBMs, while neuronal differentiation of GBM tumorspheres following the inhibition of ERK1/2 activation requires the functional expression of miR-124 and the depletion of its target gene SOX9. Overexpression of miR124 depletes SOX9 in vivo and promotes a stem-like-to-neuronal transition, with reduced tumorigenicity and increased radiation sensitivity. Providing a rationale for reports demonstrating miR-124-induced abrogation of GBM aggressiveness, we conclude that reversal of an ERK1/2-miR-124-SOX9 axis induces a neuronal phenotype and that enforcing neuronal differentiation represents a therapeutic strategy to improve outcomes in GBM.
Assuntos
Neoplasias Encefálicas/patologia , Diferenciação Celular , Glioblastoma/patologia , Sistema de Sinalização das MAP Quinases , MicroRNAs/metabolismo , Neurônios/patologia , Fatores de Transcrição SOX9/metabolismo , Animais , Astrocitoma/genética , Astrocitoma/patologia , Benzamidas/farmacologia , Neoplasias Encefálicas/genética , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Difenilamina/análogos & derivados , Difenilamina/farmacologia , Progressão da Doença , Feminino , Glioblastoma/genética , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Nus , MicroRNAs/genética , Invasividade Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Tolerância a Radiação/efeitos dos fármacosRESUMO
PURPOSE: Isocitrate dehydrogenase (IDH)-mutant glioma is a distinct glioma molecular subtype for which no effective molecularly directed therapy exists. Low-grade gliomas, which are 80%-90% IDH-mutant, have high RNA levels of the cell surface Notch ligand DLL3. We sought to determine DLL3 expression by IHC in glioma molecular subtypes and the potential efficacy of an anti-DLL3 antibody-drug conjugate (ADC), rovalpituzumab tesirine (Rova-T), in IDH-mutant glioma. EXPERIMENTAL DESIGN: We evaluated DLL3 expression by RNA using TCGA data and by IHC in a discovery set of 63 gliomas and 20 nontumor brain tissues and a validation set of 62 known IDH wild-type and mutant gliomas using a monoclonal anti-DLL3 antibody. Genotype was determined using a DNA methylation array classifier or by sequencing. The effect of Rova-T on patient-derived endogenous IDH-mutant glioma tumorspheres was determined by cell viability assay. RESULTS: Compared to IDH wild-type glioblastoma, IDH-mutant gliomas have significantly higher DLL3 RNA (P < 1 × 10-15) and protein by IHC (P = 0.0014 and P < 4.3 × 10-6 in the discovery and validation set, respectively). DLL3 immunostaining was intense and homogeneous in IDH-mutant gliomas, retained in all recurrent tumors, and detected in only 1 of 20 nontumor brains. Patient-derived IDH-mutant glioma tumorspheres overexpressed DLL3 and were potently sensitive to Rova-T in an antigen-dependent manner. CONCLUSIONS: DLL3 is selectively and homogeneously expressed in IDH-mutant gliomas and can be targeted with Rova-T in patient-derived IDH-mutant glioma tumorspheres. Our findings are potentially immediately translatable and have implications for therapeutic strategies that exploit cell surface tumor-associated antigens.
Assuntos
Glioma/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intracelular/genética , Isocitrato Desidrogenase/genética , Proteínas de Membrana/genética , Terapia de Alvo Molecular , Anticorpos Monoclonais Humanizados/genética , Anticorpos Monoclonais Humanizados/uso terapêutico , Benzodiazepinonas/uso terapêutico , Encéfalo/patologia , Metilação de DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genótipo , Glioma/genética , Glioma/patologia , Humanos , Imunoconjugados/genética , Imunoconjugados/uso terapêutico , Ligantes , Masculino , Mutação , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , RNA/genética , Receptores Notch/genéticaRESUMO
Amplification of the epidermal growth factor receptor gene (EGFR) represents one of the most commonly observed genetic lesions in glioblastoma (GBM); however, therapies targeting this signaling pathway have failed clinically. Here, using human tumors, primary patient-derived xenografts (PDX), and a murine model for GBM, we demonstrate that EGFR inhibition leads to increased invasion of tumor cells. Further, EGFR inhibitor-treated GBM demonstrates altered oxidative stress, with increased lipid peroxidation, and generation of toxic lipid peroxidation products. A tumor cell subpopulation with elevated aldehyde dehydrogenase (ALDH) levels was determined to comprise a significant proportion of the invasive cells observed in EGFR inhibitor-treated GBM. Our analysis of the ALDH1A1 protein in newly diagnosed GBM revealed detectable ALDH1A1 expression in 69% (35/51) of the cases, but in relatively low percentages of tumor cells. Analysis of paired human GBM before and after EGFR inhibitor therapy showed an increase in ALDH1A1 expression in EGFR-amplified tumors (P < 0.05, n = 13 tumor pairs), and in murine GBM ALDH1A1-high clones were more resistant to EGFR inhibition than ALDH1A1-low clones. Our data identify ALDH levels as a biomarker of GBM cells with high invasive potential, altered oxidative stress, and resistance to EGFR inhibition, and reveal a therapeutic target whose inhibition should limit GBM invasion.
Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Família Aldeído Desidrogenase 1/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dasatinibe/farmacologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Retinal Desidrogenase/metabolismoRESUMO
Glioblastoma is the most common and aggressive adult brain cancer. Tumors show frequent dysregulation of the PI3K-mTOR pathway. Although a number of small molecules target the PI3K-AKT-mTOR axis, their preclinical and clinical efficacy has been limited. Reasons for treatment failure include poor penetration of agents into the brain and observations that blockade of PI3K or AKT minimally affects downstream mTOR activity in glioma. Clinical trials using allosteric mTOR inhibitors (rapamycin and rapalogs) to treat patients with glioblastoma have also been unsuccessful or uncertain, in part, because rapamycin inefficiently blocks the mTORC1 target 4EBP1 and feeds back to activate PI3K-AKT signaling. Inhibitors of the mTOR kinase (TORKi) such as TAK-228/MLN0128 interact orthosterically with the ATP- and substrate-binding pocket of mTOR kinase, efficiently block 4EBP1 in vitro, and are currently being investigated in the clinical trials. Preclinical studies suggest that TORKi have poor residence times of mTOR kinase, and our data suggest that this poor pharmacology translates into disappointing efficacy in glioblastoma xenografts. RapaLink-1, a TORKi linked to rapamycin, represents a drug with improved pharmacology against 4EBP1. In this review, we clarify the importance of 4EBP1 as a biomarker for the efficacy of PI3K-AKT-mTOR inhibitors in glioblastoma. We also review mechanistic data by which RapaLink-1 blocks p-4EBP1 and discuss future clinical strategies for 4EBP1 inhibition in glioblastoma. Clin Cancer Res; 24(1); 14-21. ©2017 AACR.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Biomarcadores Tumorais , Glioblastoma/metabolismo , Fosfoproteínas/antagonistas & inibidores , Animais , Proteínas de Ciclo Celular , Proliferação de Células , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Terapia de Alvo Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismoRESUMO
Glioblastoma is a particularly challenging cancer, as there are currently limited options for treatment. New delivery routes are being explored, including direct intratumoral injection via convection-enhanced delivery (CED). While promising, convection-enhanced delivery of traditional chemotherapeutics such as doxorubicin (DOX) has seen limited success. Several studies have demonstrated that attaching a drug to polymeric nanoscale materials can improve drug delivery efficacy via CED. We therefore set out to evaluate a panel of morphologically distinct protein nanoparticles for their potential as CED drug delivery vehicles for glioblastoma treatment. The panel consisted of three different virus-like particles (VLPs), MS2 spheres, tobacco mosaic virus (TMV) disks and nanophage filamentous rods modified with DOX. While all three VLPs displayed adequate drug delivery and cell uptake in vitro, increased survival rates were only observed for glioma-bearing mice that were treated via CED with TMV disks and MS2 spheres conjugated to doxorubicin, with TMV-treated mice showing the best response. Importantly, these improved survival rates were observed after only a single VLPâ»DOX CED injection several orders of magnitude smaller than traditional IV doses. Overall, this study underscores the potential of nanoscale chemotherapeutic CED using virus-like particles and illustrates the need for further studies into how the overall morphology of VLPs influences their drug delivery properties.
RESUMO
Inhibitors of BRAFV600E kinase are currently under investigations in preclinical and clinical studies involving BRAFV600E glioma. Studies demonstrated clinical response to such individualized therapy in the majority of patients whereas in some patients tumors continue to grow despite treatment. To study resistance mechanisms, which include feedback activation of mitogen-activated protein kinase (MAPK) signaling in melanoma, we developed a luciferase-modified cell line (2341luc) from a BrafV600E mutant and Cdkn2a- deficient murine high-grade glioma, and analyzed its molecular responses to BRAFV600E- and MAPK kinase (MEK)-targeted inhibition. Immunocompetent, syngeneic FVB/N mice with intracranial grafts of 2341luc were tested for effects of BRAFV600E and MEK inhibitor treatments, with bioluminescence imaging up to 14-days after start of treatment and survival analysis as primary indicators of inhibitor activity. Intracranial injected tumor cells consistently generated high-grade glioma-like tumors in syngeneic mice. Intraperitoneal daily delivery of BRAFV600E inhibitor dabrafenib only transiently suppressed MAPK signaling, and rather increased Akt signaling and failed to extend survival for mice with intracranial 2341luc tumor. MEK inhibitor trametinib delivered by oral gavage daily suppressed MAPK pathway more effectively and had a more durable anti-growth effect than dabrafenib as well as a significant survival benefit. Compared with either agent alone, combined BRAFV600E and MEK inhibitor treatment was more effective in reducing tumor growth and extending animal subject survival, as corresponding to sustained MAPK pathway inhibition. Results derived from the 2341luc engraftment model application have clinical implications for the management of BRAFV600E glioma.
Assuntos
Antineoplásicos/farmacologia , Glioma/genética , Glioma/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Códon , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Expressão Gênica , Técnicas de Inativação de Genes , Genótipo , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Camundongos , Terapia de Alvo Molecular , Mutação , Gradação de Tumores , Transplante IsogênicoRESUMO
PURPOSE: Malignant astrocytomas (MA) are aggressive central nervous system tumors with poor prognosis. Activating mutation of BRAF (BRAF(V600E)) has been reported in a subset of these tumors, especially in children. We have investigated the incidence of BRAF(V600E) in additional pediatric patient cohorts and examined the effects of BRAF blockade in preclinical models of BRAF(V600E) and wild-type BRAF MA. EXPERIMENTAL DESIGN: BRAF(V600E) mutation status was examined in two pediatric MA patient cohorts. For functional studies, BRAF(V600E) MA cell lines were used to investigate the effects of BRAF shRNA knockdown in vitro, and to investigate BRAF pharmacologic inhibition in vitro and in vivo. RESULTS: BRAF(V600E) mutations were identified in 11 and 10% of MAs from two distinct series of tumors (six of 58 cases total). BRAF was expressed in all MA cell lines examined, among which BRAF(V600E) was identified in four instances. Using the BRAF(V600E)-specific inhibitor PLX4720, pharmacologic blockade of BRAF revealed preferential antiproliferative activity against BRAF(V600E) mutant cells in vitro, in contrast to the use of shRNA-mediated knockdown of BRAF, which inhibited cell growth of glioma cell lines regardless of BRAF mutation status. Using orthotopic MA xenografts, we show that PLX4720 treatment decreases tumor growth and increases overall survival in mice-bearing BRAF(V600E) mutant xenografts, while being ineffective, and possibly tumor promoting, against xenografts with wild-type BRAF. CONCLUSIONS: Our results indicate a 10% incidence of activating BRAF(V600E) among pediatric MAs. With regard to implications for therapy, our results support evaluation of BRAF(V600E)-specific inhibitors for treating BRAF(V600E) MA patients.
Assuntos
Astrocitoma/genética , Neoplasias Encefálicas/genética , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Adolescente , Substituição de Aminoácidos , Animais , Astrocitoma/metabolismo , Astrocitoma/patologia , Astrocitoma/prevenção & controle , Sequência de Bases , Western Blotting , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/prevenção & controle , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Humanos , Indóis/farmacologia , Lactente , Estimativa de Kaplan-Meier , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/metabolismo , Interferência de RNA , Sulfonamidas/farmacologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto JovemRESUMO
Glioblastoma multiforme (GBM) is the most common and lethal primary brain tumor with median survival of only 12 to 15 months under the current standard of care. To both increase tumor specificity and decrease nonspecific side effects, recent experimental strategies in the treatment of GBM have focused on targeting cell surface receptors, including the transferrin (Tf) receptor, that are overexpressed in many cancers. A major limitation of Tf-based therapeutics is the short association of Tf within the cell to deliver its payload. We previously developed two mutant Tf molecules, K206E/R632A Tf and K206E/K534A Tf, in which iron is locked into each of the two homologous lobes. Relative to wild-type Tf, we showed enhanced delivery of diphtheria toxin (DT) from these mutants to a monolayer culture of HeLa cells. Here, we extend the application of our Tf mutants to the treatment of GBM. In vitro treatment of Tf mutants to a monolayer culture of glioma cells showed enhanced cellular association as well as enhanced delivery of conjugated DT. Treatment of GBM xenografts with mutant Tf-conjugated DT resulted in pronounced regression in vivo, indicating their potential use as drug carriers.
Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Toxina Diftérica/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Glioblastoma/tratamento farmacológico , Imunotoxinas/administração & dosagem , Transferrina/administração & dosagem , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Cricetinae , Toxina Diftérica/farmacocinética , Feminino , Engenharia Genética/métodos , Glioblastoma/metabolismo , Humanos , Imunotoxinas/genética , Imunotoxinas/farmacocinética , Camundongos , Camundongos Nus , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacocinética , Transferrina/genética , Transferrina/farmacocinética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Recurrent non-cerebellar primitive neuroectodermal tumors (PNETs) carry a dismal prognosis when treated with conventional chemotherapy alone. XSWe tested the efficacy of high-dose chemotherapy (HDC) followed by autologous stem-cell rescue (ASCR) in this setting. PROCEDURE: Eligibility mandated either minimal residual disease or evidence of chemosensitivity before HDC. Conditioning consisted of carboplatin (CBDCA) (500 mg/m(2) or AUC = 7 mg/ml min using the Calvert formula) on days -8 to -6, thiotepa (300 mg/m(2)), and etoposide (250 mg/m(2)) on days -5 to -3. Irradiation was given post HDC selectively. RESULTS: Among 17 patients treated in this study, there were eight pineoblastoma(s) (pineo), seven cortical PNETs, and two arising elsewhere. Relapse was either local (nine) or metastatic to the brain (four) or spine (four). Two patients received HDC as the sole therapy for recurrence; additionally, eight underwent surgical debulking before HDC, and nine received irradiation, including six after HDC. Median age at ASCR was 3.9 years. Two patients died of toxicity (11%) and ten experienced tumor relapse (range: 23-361 days post ASCR). Five patients with cortical PNETs remain alive disease-free (median follow-up: 8.3 years); four of them received irradiation post HDC. The difference in 5-year event-free survival (EFS) between patients with pineo and other supratentorial PNETs was significant (0 vs. 62.5 +/- 17%, P = 0.0065). Both surgery at relapse and irradiation post HDC were favorable prognostic factors (P = 0.006 and 0.01, respectively). CONCLUSIONS: Patients with recurrent cortical PNETs can be cured with this strategy. Surgical debulking before, and irradiation after HDC play an important role in treatment success.