Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37958854

RESUMO

Lithium (Li) salts are commonly used as medications for bipolar disorders. In addition to its therapeutic value, Li is also being increasingly used as a battery component in modern electronic devices. Concerns about its toxicity and negative impact on the heart have recently been raised. We investigated the effects of long-term Li treatment on the heart, liver, and kidney in mice. Sixteen C57BL/6J mice were randomly assigned to receive oral administration of Li carbonate (n = 8) or act as a control group (n = 8) for 12 weeks. We evaluated the cardiac electrical activity, morphology and function, and pathways contributing to remodelling. We assessed the multi-organ toxicity using histopathology techniques in the heart, liver, and kidney. Our findings suggest that mice receiving Li had impaired systolic function and ventricular repolarisation and were more susceptible to arrhythmias under adrenergic stimulation. The Li treatment caused an increase in the cardiomyocytes' size, the modulation of the extracellular signal-regulated kinase (ERK) pathway, along with some minor tissue damage. Our findings revealed a cardiotoxic effect of Li at therapeutic dosage, along with some histopathological alterations in the liver and kidney. In addition, our study suggests that our model could be used to test potential treatments for Li-induced cardiotoxicity.


Assuntos
Antimaníacos , Lítio , Camundongos , Animais , Lítio/toxicidade , Camundongos Endogâmicos C57BL , Antimaníacos/uso terapêutico , Compostos de Lítio , Cardiotoxicidade/tratamento farmacológico
2.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806159

RESUMO

The available evidence indicates a close connection between gut microbiota (GM) disturbance and increased risk of cardiometabolic (CM) disorders and cardiovascular (CV) disease. One major objective of this narrative review is to discuss the key contribution of dietary regimen in determining the GM biodiversity and the implications of GM dysbiosis for the overall health of the CV system. In particular, emerging molecular pathways are presented, linking microbiota-derived signals to the local activation of the immune system as the driver of a systemic proinflammatory state and permissive condition for the onset and progression of CM and CV disease. We further outline how the cross-talk between sex hormones and GM impacts disease susceptibility, thereby offering a mechanistic insight into sexual dimorphism observed in CVD. A better understanding of these relationships could help unravel novel disease targets and pave the way to the development of innovative, low-risk therapeutic strategies based on diet interventions, GM manipulation, and sex hormone analogues.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Microbiota , Doenças Cardiovasculares/etiologia , Disbiose , Microbioma Gastrointestinal/fisiologia , Hormônios Esteroides Gonadais/metabolismo , Humanos
3.
Int J Mol Sci ; 23(12)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35742991

RESUMO

The opening of the ATP-sensitive mitochondrial potassium channel (mitok-ATP) is a common goal of cardioprotective strategies in the setting of acute and chronic myocardial disease. The biologically active thyroid hormone (TH), 3-5-3-triiodothyronine (T3), has been indicated as a potential activator of mitoK-ATP but the underlying mechanisms are still elusive. Here we describe a novel role of T3 in the transcriptional regulation of mitoK and mitoSur, the recently identified molecular constituents of the channel. To mimic human ischemic heart damage, we used a rat model of a low T3 state as the outcome of a myocardial ischemia/reperfusion event, and neonatal rat cardiomyocytes (NRCM) challenged with hypoxia or H2O2. Either in the in vivo or in vitro models, T3 administration to recover the physiological concentrations was able to restore the expression level of both the channel subunits, which were found to be downregulated under the stress conditions. Furthermore, the T3-mediated transcriptional activation of mitoK-ATP in the myocardium and NRCM was associated with the repression of the TH-inactivating enzyme, deiodinase 3 (Dio3), and an up-regulation of the T3-responsive miR-133a-3p. Mechanistically, the loss and gain of function experiments and reporter gene assays performed in NRCM, have revealed a new regulatory axis whereby the silencing of Dio3 under the control of miR-133a-3p drives the T3-dependent modulation of cardiac mitoK and mitoSur transcription.


Assuntos
MicroRNAs , Mitocôndrias Cardíacas , Trifosfato de Adenosina/metabolismo , Animais , Peróxido de Hidrogênio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias Cardíacas/metabolismo , Canais de Potássio/metabolismo , Ratos , Tri-Iodotironina/metabolismo , Tri-Iodotironina/farmacologia
4.
Int J Obes (Lond) ; 44(6): 1428-1439, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31792335

RESUMO

BACKGROUND/OBJECTIVES: It is well established that obesity is an independent risk factor for cardiac death. In particular various cardiac alterations have been described in obese patients such as long QT on ECG, impaired diastolic filling of the left ventricle (LV), and all-type arrhythmias. In the present study, the above alterations were all reproduced in a mouse model of fat diet-induced obesity. ANIMALS/METHODS: In C57BL6 mice fed on a high fat (n = 20, HF-group) or standard diet (n = 20, C-group) for 13 weeks, balanced by sex and age, we examined heart morphology and function by high-frequency ultrasounds and electric activity by surface ECG. Besides, the autonomic sympathovagal balance (heart-rate variability) and the arrhythmogenic susceptibility to adrenergic challenge (i.p. isoproterenol) were compared in the two groups, as well as glucose tolerance (i.p. glucose test) and liver steatosis (ultrasounds). RESULTS: Body weight in HF-group exceeded C-group at the end of the experiment (+28% p < 0.01). An abnormal ventricular repolarization (long QTc on ECG) together with impaired LV filling rate and increased LV mass was found in HF-group as compared to C. Moreover, HF-group showed higher heart rate, unbalanced autonomic control with adrenergic prevalence and a greater susceptibility to develop rhythm disturbances under adrenergic challenge (i.p. isoprenaline). Impaired glucose tolerance and higher liver fat accumulation were also found in HF mice compared to C. CONCLUSIONS: The described murine model of 13 weeks on HF diet, well reproduced the cardiovascular and metabolic disorders reported in clinical obesity, suggesting its potential utility as translational mean suitable for testing new pharmaco-therapeutic approaches to the treatment of obesity and its comorbidity.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Disfunção Ventricular Esquerda/fisiopatologia , Tecido Adiposo/diagnóstico por imagem , Animais , Arritmias Cardíacas , Modelos Animais de Doenças , Eletrocardiografia , Intolerância à Glucose , Frequência Cardíaca , Fígado/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/fisiopatologia
5.
Pharmacol Res ; 159: 105047, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32590101

RESUMO

Obesity is an independent risk factor to develop cardiac functional and structural impairments. Here, we investigated the effects of supplementation of inositols on the electrical, structural, and functional cardiac alterations in the mouse model of high fat diet (HFD) induced obesity. Three groups of C57BL6 mice (n = 16 each) were studied: j) HFD feeding; jj) HFD feeding + inositols from week 9 to 13; jjj) standard diet feeding. Study observation period was 13 weeks. Inositols were administered as mixture of myo-inositol and d-chiro-inositol in the drinking water. Effects of inositols were evaluated based on electrical, structural, and functional cardiac features, autonomic sympatho-vagal balance and arrhythmogenic susceptibility to adrenergic challenge. Heart samples were collected for histological evaluations and transcriptional analyses of genes involved in defining the shape and propagation of the action potential, fatty acid metabolism and oxidative stress. Inositol supplementation significantly restored control values of heart rate and QTc interval on ECG and of sympatho-vagal balance. Moreover, it blunted the increase in left ventricular mass and cardiomyocyte hypertrophy, reversed diastolic dysfunction, reduced the susceptibility to arrhythmic events and restored the expression level of cardiac genes altered by HFD. The present study shows, for the first time, how a short period of supplementation with inositols is able to ameliorate the HFD-induced electrical, structural and functional heart alterations including ventricular remodeling. Results provide a new insight into the cardioprotective effect of inositols, which could pave the way for a novel therapeutic approach to the treatment of HFD obesity-induced heart dysfunction.


Assuntos
Arritmias Cardíacas/prevenção & controle , Suplementos Nutricionais , Sistema de Condução Cardíaco/efeitos dos fármacos , Hipertrofia Ventricular Esquerda/prevenção & controle , Inositol/administração & dosagem , Miócitos Cardíacos/efeitos dos fármacos , Obesidade/tratamento farmacológico , Disfunção Ventricular Esquerda/prevenção & controle , Potenciais de Ação/efeitos dos fármacos , Administração Oral , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Sistema de Condução Cardíaco/metabolismo , Sistema de Condução Cardíaco/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Obesidade/complicações , Fatores de Tempo , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
6.
Int J Mol Sci ; 20(14)2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295805

RESUMO

Mitochondrial dysfunctions are major contributors to heart disease onset and progression. Under ischemic injuries or cardiac overload, mitochondrial-derived oxidative stress, Ca2+ dis-homeostasis, and inflammation initiate cross-talking vicious cycles leading to defects of mitochondrial DNA, lipids, and proteins, concurrently resulting in fatal energy crisis and cell loss. Blunting such noxious stimuli and preserving mitochondrial homeostasis are essential to cell survival. In this context, mitochondrial quality control (MQC) represents an expanding research topic and therapeutic target in the field of cardiac physiology. MQC is a multi-tier surveillance system operating at the protein, organelle, and cell level to repair or eliminate damaged mitochondrial components and replace them by biogenesis. Novel evidence highlights the critical role of thyroid hormones (TH) in regulating multiple aspects of MQC, resulting in increased organelle turnover, improved mitochondrial bioenergetics, and the retention of cell function. In the present review, these emerging protective effects are discussed in the context of cardiac ischemia-reperfusion (IR) and heart failure, focusing on MQC as a strategy to blunt the propagation of connected dangerous signaling cascades and limit adverse remodeling. A better understanding of such TH-dependent signaling could provide insights into the development of mitochondria-targeted treatments in patients with cardiac disease.


Assuntos
Cardiopatias/etiologia , Cardiopatias/metabolismo , Mitocôndrias Cardíacas/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Transporte Biológico , Cálcio/metabolismo , Suscetibilidade a Doenças , Metabolismo Energético , Regulação da Expressão Gênica , Cardiopatias/fisiopatologia , Homeostase , Humanos , Mitocôndrias Cardíacas/genética , Mitofagia , Estresse Oxidativo , Transdução de Sinais , Glândula Tireoide/metabolismo
7.
Mol Med ; 21(1): 900-911, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26623926

RESUMO

Activation of transforming growth factor (TGF)-ß1 signaling in the ischemia/reperfusion (I/R) injured myocardium leads to dysregulation of miR-29-30-133, favoring the profibrotic process that leads to adverse cardiac remodeling (CR). We have previously shown that timely correction of the postischemic low-T3 syndrome (Low-T3S) exerts antifibrotic effects, but the underlying molecular players are still unknown. Here we hypothesize that a prompt, short-term infusion of T3 in a rat model of post I/R Low-T3S could hamper the early activation of the TGFß1-dependent profibrotic cascade to confer long-lasting cardioprotection against adverse CR. Twenty-four hours after I/R, rats that developed the Low-T3S were randomly assigned to receive a 48-h infusion of 6 µg/kg/d T3 (I/R-L+T3) or saline (I/R-L) and sacrificed at 3 or 14 d post-I/R. Three days post-I/R, Low-T3S correction favored functional cardiac recovery. This effect was paralleled by a drop in TGFß1 and increased miR-133a, miR-30c and miR-29c in the infarcted myocardium. Consistently, connective transforming growth factor (CTGF) and matrix metalloproteinase-2(MMP-2), validated targets of the above miRNAs, were significantly reduced. Fourteen days post-I/R, the I/R-L+T3 rats presented a significant reduction of scar size with a better preservation of cardiac performance and LV chamber geometry. At this time, TGFß1 and miR-29c levels were in the normal range in both groups, whereas miR-30c-133a, MMP-2 and CTGF remained significantly altered in the I/R group. In conclusion, the antifibrotic effect exerted by T3 in the early phase of postischemic wound healing triggers a persistent cardioprotective response that hampers the progression of heart dysfunction and adverse CR.

8.
Heart Fail Rev ; 21(4): 391-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27011011

RESUMO

The evolution of cardiac disease after an acute ischemic event depends on a complex and dynamic network of mechanisms alternating from ischemic damage due to acute coronary occlusion to reperfusion injury due to the adverse effects of coronary revascularization till post-ischemic remodeling. Cardioprotection is a new purpose of the therapeutic interventions in cardiology with the goal to reduce infarct size and thus prevent the progression toward heart failure after an acute ischemic event. In a complex biological system such as the human one, an effective cardioprotective strategy should diachronically target the network of cross-talking pathways underlying the disease progression. Thyroid system is strictly interconnected with heart homeostasis, and recent studies highlighted its role in cardioprotection, in particular through the preservation of mitochondrial function and morphology, the antifibrotic and proangiogenetic effect and also to the potential induction of cell regeneration and growth. The objective of this review was to highlight the cardioprotective role of triiodothyronine in the complexity of post-ischemic disease evolution.


Assuntos
Cardiotônicos/farmacologia , Coração/fisiopatologia , Isquemia Miocárdica/prevenção & controle , Isquemia Miocárdica/fisiopatologia , Hormônios Tireóideos/farmacologia , Animais , Modelos Animais de Doenças , Coração/efeitos dos fármacos , Terapia de Reposição Hormonal , Humanos , Mitocôndrias Cardíacas/efeitos dos fármacos , Ratos , Regeneração/efeitos dos fármacos , Hormônios Tireóideos/fisiologia
9.
Int J Mol Sci ; 16(3): 6312-36, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25809607

RESUMO

Ischemic heart disease is the major cause of mortality and morbidity worldwide. Early reperfusion after acute myocardial ischemia has reduced short-term mortality, but it is also responsible for additional myocardial damage, which in the long run favors adverse cardiac remodeling and heart failure evolution. A growing body of experimental and clinical evidence show that the mitochondrion is an essential end effector of ischemia/ reperfusion injury and a major trigger of cell death in the acute ischemic phase (up to 48-72 h after the insult), the subacute phase (from 72 h to 7-10 days) and chronic stage (from 10-14 days to one month after the insult). As such, in recent years scientific efforts have focused on mitochondria as a target for cardioprotective strategies in ischemic heart disease and cardiomyopathy. The present review discusses recent advances in this field, with special emphasis on the emerging role of the biologically active thyroid hormone triiodothyronine (T3).


Assuntos
Mitocôndrias/metabolismo , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Tri-Iodotironina/metabolismo , Humanos , Mitocôndrias/patologia , Traumatismo por Reperfusão Miocárdica/patologia
10.
Int J Mol Sci ; 16(11): 26687-705, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26561807

RESUMO

Mitochondria are major determinants of cell fate in ischemia/reperfusion injury (IR) and common effectors of cardio-protective strategies in cardiac ischemic disease. Thyroid hormone homeostasis critically affects mitochondrial function and energy production. Since a low T3 state (LT3S) is frequently observed in the post infarction setting, the study was aimed to investigate the relationship between 72 h post IR T3 levels and both the cardiac function and the mitochondrial proteome in a rat model of IR. The low T3 group exhibits the most compromised cardiac performance along with the worst mitochondrial activity. Accordingly, our results show a different remodeling of the mitochondrial proteome in the presence or absence of a LT3S, with alterations in groups of proteins that play a key role in energy metabolism, quality control and regulation of cell death pathways. Overall, our findings highlight a relationship between LT3S in the early post IR and poor cardiac and mitochondrial outcomes, and suggest a potential implication of thyroid hormone in the cardio-protection and tissue remodeling in ischemic disease.


Assuntos
Mitocôndrias Cardíacas/genética , Proteínas Mitocondriais/genética , Infarto do Miocárdio/genética , Traumatismo por Reperfusão Miocárdica/genética , Proteoma/genética , Tri-Iodotironina/genética , Animais , Morte Celular/genética , Metabolismo Energético/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Proteínas Mitocondriais/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteoma/metabolismo , Proteômica/métodos , Ratos , Ratos Wistar , Transdução de Sinais , Tri-Iodotironina/deficiência
11.
Int J Cardiol ; 409: 132203, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38795973

RESUMO

BACKGROUND: Sacubitril/valsartan has been demonstrated to promote left ventricular (LV) reverse remodelling and improve outcomes in patients with heart failure (HF) with reduced ejection fraction (EF). Its molecular and tissue effects have not been fully elucidated yet, due to the paucity of preclinical studies, mostly based on ischaemic models. We aimed to evaluate the effects of sacubitril/valsartan on LV remodelling, myocardial fibrosis and mitochondrial biology in a murine model of non-ischaemic LV dysfunction. METHODS: Adult transgenic male mice with cardiac-specific hyperaldosteronism (AS mice) received subcutaneous isoproterenol injections to induce LV systolic dysfunction. After 7 days, mice were randomized to a 2-week treatment with saline (ISO-AS n = 15), valsartan (ISO + V n = 12) or sacubitril/valsartan (ISO + S/V n = 12). Echocardiography was performed at baseline, at day 7, and after each of the 2 weeks of treatment. After sacrifice at day 21, histological and immunochemical assays were performed. A control group of AS mice was also obtained (Ctrl-AS n = 8). RESULTS: Treatment with sacubitril/valsartan, but not with valsartan, induced a significant improvement in LVEF (p = 0.009 vs ISO-AS) and fractional shortening (p = 0.032 vs ISO-AS) after 2- week treatment. In both ISO + V and ISO + S/V groups, a trend toward reduction of the cardiac collagen 1/3 expression ratio was detected. ISO + V and ISO + S/V groups showed a significant recovery of mitochondrial morphology and inner membrane function meant for oxidative phosphorylation. CONCLUSION: In a murine model of non-ischaemic HF, sacubitril/valsartan proved to have beneficial effects on LV systolic function, and on cardiac energetics, by improving mitochondrial activity.


Assuntos
Aminobutiratos , Compostos de Bifenilo , Modelos Animais de Doenças , Combinação de Medicamentos , Fibrose , Isoproterenol , Tetrazóis , Valsartana , Disfunção Ventricular Esquerda , Remodelação Ventricular , Animais , Aminobutiratos/farmacologia , Compostos de Bifenilo/farmacologia , Camundongos , Masculino , Remodelação Ventricular/efeitos dos fármacos , Tetrazóis/farmacologia , Fibrose/induzido quimicamente , Disfunção Ventricular Esquerda/induzido quimicamente , Disfunção Ventricular Esquerda/fisiopatologia , Isoproterenol/toxicidade , Camundongos Transgênicos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Antagonistas de Receptores de Angiotensina/farmacologia , Distribuição Aleatória
12.
J Med Chem ; 67(1): 17-37, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38113353

RESUMO

Mitochondria dysfunctions are typical hallmarks of cardiac disorders (CDs). The multiple tasks of this energy-producing organelle are well documented, but its pathophysiologic involvement in several manifestations of heart diseases, such as altered electromechanical coupling, excitability, and arrhythmias, is still under investigation. The human 18 kDa translocator protein (TSPO) is a protein located on the outer mitochondrial membrane whose expression is altered in different pathological conditions, including CDs, making it an attractive therapeutic and diagnostic target. Currently, only a few TSPO ligands are employed in CDs and cardiac imaging. In this Perspective, we report an overview of the emerging role of TSPO at the heart level, focusing on the recent literature concerning the development of TSPO ligands used for fighting and imaging heart-related disease conditions. Accordingly, targeting TSPO might represent a successful strategy to achieve novel therapeutic and diagnostic strategies to unravel the fundamental mechanisms and to provide solutions to still unanswered questions in CDs.


Assuntos
Cardiopatias , Receptores de GABA , Humanos , Receptores de GABA/metabolismo , Membranas Mitocondriais/metabolismo , Cardiopatias/tratamento farmacológico , Cardiopatias/metabolismo , Ligantes
13.
Metabolites ; 13(6)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37367916

RESUMO

The cardiovascular and metabolic disorders, collectively known as cardiometabolic disease (CMD), are high morbidity and mortality pathologies associated with lower quality of life and increasing health-care costs. The influence of the gut microbiota (GM) in dictating the interpersonal variability in CMD susceptibility, progression and treatment response is beginning to be deciphered, as is the mutualistic relation established between the GM and diet. In particular, dietary factors emerge as pivotal determinants shaping the architecture and function of resident microorganisms in the human gut. In turn, intestinal microbes influence the absorption, metabolism, and storage of ingested nutrients, with potentially profound effects on host physiology. Herein, we present an updated overview on major effects of dietary components on the GM, highlighting the beneficial and detrimental consequences of diet-microbiota crosstalk in the setting of CMD. We also discuss the promises and challenges of integrating microbiome data in dietary planning aimed at restraining CMD onset and progression with a more personalized nutritional approach.

14.
Life Sci ; 321: 121575, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36933828

RESUMO

Heart disease and cancer are two major causes of morbidity and mortality in the industrialized countries, and their increasingly recognized connections are shifting the focus from single disease studies to an interdisciplinary approach. Fibroblast-mediated intercellular crosstalk is critically involved in the evolution of both pathologies. In healthy myocardium and in non-cancerous conditions, resident fibroblasts are the main cell source for synthesis of the extracellular matrix (ECM) and important sentinels of tissue integrity. In the setting of myocardial disease or cancer, quiescent fibroblasts activate, respectively, into myofibroblasts (myoFbs) and cancer-associated fibroblasts (CAFs), characterized by increased production of contractile proteins, and by a highly proliferative and secretory phenotype. Although the initial activation of myoFbs/CAFs is an adaptive process to repair the damaged tissue, massive deposition of ECM proteins leads to maladaptive cardiac or cancer fibrosis, a recognized marker of adverse outcome. A better understanding of the key mechanisms orchestrating fibroblast hyperactivity may help developing innovative therapeutic options to restrain myocardial or tumor stiffness and improve patient prognosis. Albeit still unappreciated, the dynamic transition of myocardial and tumor fibroblasts into myoFbs and CAFs shares several common triggers and signaling pathways relevant to TGF-ß dependent cascade, metabolic reprogramming, mechanotransduction, secretory properties, and epigenetic regulation, which might lay the foundation for future antifibrotic intervention. Therefore, the aim of this review is to highlight emerging analogies in the molecular signature underlying myoFbs and CAFs activation with the purpose of identifying novel prognostic/diagnostic biomarkers, and to elucidate the potential of drug repositioning strategies to mitigate cardiac/cancer fibrosis.


Assuntos
Epigênese Genética , Neoplasias , Humanos , Mecanotransdução Celular , Fibroblastos/metabolismo , Miofibroblastos/metabolismo , Fibrose , Miocárdio/metabolismo , Neoplasias/metabolismo
15.
J Cell Mol Med ; 15(3): 514-24, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20100314

RESUMO

3,5,3'-Levo-triiodothyronine (L-T3) is essential for DNA transcription, mitochondrial biogenesis and respiration, but its circulating levels rapidly decrease after myocardial infarction (MI). The main aim of our study was to test whether an early and sustained normalization of L-T3 serum levels after MI exerts myocardial protective effects through a mitochondrial preservation. Seventy-two hours after MI induced by anterior interventricular artery ligation, rats were infused with synthetic L-T3 (1.2 µg/kg/day) or saline over 4 weeks. Compared to saline, L-T3 infusion restored FT3 serum levels at euthyroid state (3.0 ± 0.2 versus 4.2 ± 0.3 pg/ml), improved left ventricular (LV) ejection fraction (39.5 ± 2.5 versus 65.5 ± 6.9%), preserved LV end-systolic wall thickening in the peri-infarct zone (6.34 ± 3.1 versus 33.7 ± 6.21%) and reduced LV infarct-scar size by approximately 50% (all P < 0.05). Moreover, L-T3 significantly increased angiogenesis and cell survival and enhanced the expression of nuclear-encoded transcription factors involved in these processes. Finally, L-T3 significantly increased the expression of factors involved in mitochondrial DNA transcription and biogenesis, such as hypoxic inducible factor-1α, mitochondrial transcription factor A and peroxisome proliferator activated receptor γ coactivator-1α, in the LV peri-infarct zone. To further explore mechanisms of L-T3 protective effects, we exposed isolated neonatal cardiomyocytes to H(2)O(2) and found that L-T3 rescued mitochondrial biogenesis and function and protected against cell death via a mitoKATP dependent pathway. Early and sustained physiological restoration of circulating L-T3 levels after MI halves infarct scar size and prevents the progression towards heart failure. This beneficial effect is likely due to enhanced capillary formation and mitochondrial protection.


Assuntos
Terapia de Reposição Hormonal , Mitocôndrias/efeitos dos fármacos , Infarto do Miocárdio/prevenção & controle , Tri-Iodotironina/uso terapêutico , Remodelação Ventricular/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Capilares/efeitos dos fármacos , Capilares/fisiopatologia , Células Cultivadas , Hemodinâmica/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Infusões Subcutâneas , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Oxidantes/farmacologia , Distribuição Aleatória , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tiroxina/sangue , Fatores de Tempo , Tri-Iodotironina/administração & dosagem , Tri-Iodotironina/sangue
16.
Pharmaceutics ; 12(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233847

RESUMO

Cardiovascular disease (CVD) represents a major threat for human health. The available preventive and treatment interventions are insufficient to revert the underlying pathological processes, which underscores the urgency of alternative approaches. Mitochondria dysfunction plays a key role in the etiopathogenesis of CVD and is regarded as an intriguing target for the development of innovative therapies. Oxidative stress, mitochondrial permeability transition pore opening, and excessive fission are major noxious pathways amenable to drug therapy. Thanks to the advancements of nanotechnology research, several mitochondria-targeted drug delivery systems (DDS) have been optimized with improved pharmacokinetic and biocompatibility, and lower toxicity and antigenicity for application in the cardiovascular field. This review summarizes the recent progress and remaining obstacles in targeting mitochondria as a novel therapeutic option for CVD. The advantages of nanoparticle delivery over un-targeted strategies are also discussed.

17.
Cells ; 9(10)2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987653

RESUMO

The LncRNA my-heart (Mhrt) and the chromatin remodeler Brg1 inhibit each other to respectively prevent or favor the maladaptive α-myosin-heavy-chain (Myh6) to ß-myosin-heavy-chain (Myh7) switch, so their balance crucially guides the outcome of cardiac remodeling under stress conditions. Even though triiodothyronine (T3) has long been recognized as a critical regulator of the cardiac Myh isoform composition, its role as a modulator of the Mhrt/Brg1 axis is still unexplored. Here the effect of T3 on the Mhrt/Brg1 regulatory circuit has been analyzed in relation with chromatin remodeling and previously identified T3-dependent miRNAs. The expression levels of Mhrt, Brg1 and Myh6/Myh7 have been assessed in rat models of hyperthyroidism or acute myocardial ischemia/reperfusion (IR) treated with T3 replacement therapy. To gain mechanistic insights, in silico analyses and site-directed mutagenesis have been adopted in combination with gene reporter assays and loss or gain of function strategies in cultured cardiomyocytes. Our results indicate a pivotal role of Mhrt over-expression in the T3-dependent regulation of Myh switch. Mechanistically, T3 activates the Mhrt promoter at two putative thyroid hormone responsive elements (TRE) located in a crucial region that is necessary for both Mhrt activation and Brg1-dependent Mhrt repression. This newly identified T3 mode of action requires DNA chromatinization and is critically involved in mitigating the repressive function of the Brg1 protein on Mhrt promoter. In addition, T3 is also able to prevent the Brg1 over-expression observed in the post-IR setting through a pathway that might entail the T3-mediated up-regulation of miR-208a. Taken together, our data evidence a novel T3-responsive network of cross-talking epigenetic factors that dictates the cardiac Myh composition and could be of great translational relevance.


Assuntos
DNA Helicases/metabolismo , Epigênese Genética , Cadeias Pesadas de Miosina/metabolismo , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo , Tri-Iodotironina/farmacologia , Animais , Animais Recém-Nascidos , Montagem e Desmontagem da Cromatina/genética , DNA/metabolismo , Epigênese Genética/efeitos dos fármacos , Modelos Biológicos , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Regiões Promotoras Genéticas/genética , RNA Longo não Codificante/genética , Ratos Wistar , Regulação para Cima/efeitos dos fármacos
18.
Cell Biochem Funct ; 27(5): 259-63, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19466745

RESUMO

Thyroid stimulating hormone (TSH) binds to a specific TSH receptor (TSHR) which activates adenylate cyclase and increases cAMP levels in thyroidal cells. Recent studies have reported the presence of TSH receptor in several extra-thyroidal cell types, including erythrocytes. We have previously suggested that TSH is able to influence the erythrocyte Na/K-ATPase ouabain binding properties through a receptor mediated mechanism. The direct interaction of TSH receptor with the Na/K-pump and a functional role of TSHR in erythrocytes was not demonstrated. The interaction of TSH receptor with Na/K-pump and a TSHR functional role are not yet demonstrated in erythrocytes. In this study, we examined the interaction between the two receptors after TSH treatment using immunofluorescence coupled to confocal microscopy and a co-immunoprecipitation technique. The cAMP dependent signalling after TSH treatment was measured to verify TSHR functionality. We found that TSH receptor and Na/K-ATPase are localized on the membranes of both erythrocytes and erythrocyte ghosts; TSH receptor responds to TSH treatment by increasing intracellular cAMP levels from two to tenfold. In ghost membranes TSH treatment enhances up to three fold co-localization of TSHR with Na/K-ATPase and co-immunoprecipitation confirms their direct physical interaction. In conclusion our results are compatible with the existence, in erythrocytes, of a functional TSHR that interacts with Na/K-ATPase after TSH treatment, thus suggesting a novel cell signalling pathway, potentially active in local circulatory control.


Assuntos
Eritrócitos/química , Receptores da Tireotropina/análise , ATPase Trocadora de Sódio-Potássio/análise , Tireotropina/farmacologia , AMP Cíclico/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Humanos , Imunoprecipitação , Receptores da Tireotropina/metabolismo , Receptores da Tireotropina/fisiologia , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/fisiologia
19.
Life Sci ; 239: 117080, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31756341

RESUMO

The angiopoietin signal transduction system is a complex of vascular-specific kinase pathways that plays a crucial role in angiogenesis and maintenance of vascular homeostasis. Angiopoietin1 (Ang1) and 2 (Ang2), the ligand proteins of the pathway, belong to a family of glycoproteins that signal primarily through the transmembrane Tyrosine-kinase-2 receptor. Despite a considerable sequence homology, Ang1 and Ang2 manifest antagonistic effects in pathophysiological conditions. While Ang1 promotes the activation of survival pathways and the stabilization of the normal mature vessels, Ang2 can either favor vessel destabilization and leakage or promote abnormal EC proliferation in a context-dependent manner. Altered Ang1/Ang2 balance has been reported in various pathological conditions in association with inflammation and deregulated angiogenesis. In particular, increased Ang2 levels have been documented in human cancer and cardiovascular disease (CVD), including ischemic myocardial injury, heart failure and other cardiovascular complications secondary to diabetes, chronic renal damage and hypertension. Despite the obvious phenotypic differences, CVD and cancer share some common Ang2-dependent etiopathological mechanisms such as inflammation, epithelial (or endothelial) to mesenchymal transition, and adverse vascular network remodeling. Interestingly, both cancer and CVD are negatively affected by thyroid hormone dyshomeostasis. This review provides an overview of the complex Ang2-dependent signaling involved in CVD and cancer, as well as a survey of the related clinical literature. Moreover, on the basis of recent molecular acquisitions in an experimental model of post ischemic cardiac disease, the putative novel role of the thyroid hormone in the regulation of Ang1/Ang2 balance is also briefly discussed.


Assuntos
Angiopoietina-2/metabolismo , Angiopoietina-2/fisiologia , Neovascularização Patológica/metabolismo , Indutores da Angiogênese/metabolismo , Doenças Cardiovasculares/metabolismo , Endotélio Vascular/metabolismo , Humanos , Inflamação/metabolismo , Glicoproteínas de Membrana/metabolismo , Neoplasias/metabolismo , Neovascularização Fisiológica , Transdução de Sinais/fisiologia , Remodelação Vascular
20.
Artigo em Inglês | MEDLINE | ID: mdl-31555215

RESUMO

Thyroid hormone (TH) signaling is critically involved in the regulation of cardiovascular physiology. Even mild reductions of myocardial TH levels, as occur in hypothyroidism or low T3 state conditions, are thought to play a role in the progression of cardiac disorders. Due to recent advances in molecular mechanisms underlying TH action, it is now accepted that TH-dependent modulation of gene expression is achieved at multiple transcriptional and post-transcriptional levels and involves the cooperation of many processes. Among them, the epigenetic remodeling of chromatin structure and the interplay with non-coding RNA have emerged as novel TH-dependent pathways that add further degrees of complexity and broaden the network of genes controlled by TH signaling. Increasing experimental and clinical findings indicate that aberrant function of these regulatory mechanisms promotes the evolution of cardiac disorders such as post-ischemic injury, pathological hypertrophy, and heart failure, which may be reversed by the correction of the underlying TH dyshomeostasis. To encourage the clinical implementation of a TH replacement strategy in cardiac disease, here we discuss the crucial effect of epigenetic modifications and control of non-coding RNA in TH-dependent regulation of biological processes relevant for cardiac disease evolution.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa