Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38831121

RESUMO

Once considered a tissue culture-specific phenomenon, cellular senescence has now been linked to various biological processes with both beneficial and detrimental roles in humans, rodents and other species. Much of our understanding of senescent cell biology still originates from tissue culture studies, where each cell in the culture is driven to an irreversible cell cycle arrest. By contrast, in tissues, these cells are relatively rare and difficult to characterize, and it is now established that fully differentiated, postmitotic cells can also acquire a senescence phenotype. The SenNet Biomarkers Working Group was formed to provide recommendations for the use of cellular senescence markers to identify and characterize senescent cells in tissues. Here, we provide recommendations for detecting senescent cells in different tissues based on a comprehensive analysis of existing literature reporting senescence markers in 14 tissues in mice and humans. We discuss some of the recent advances in detecting and characterizing cellular senescence, including molecular senescence signatures and morphological features, and the use of circulating markers. We aim for this work to be a valuable resource for both seasoned investigators in senescence-related studies and newcomers to the field.

2.
Nat Immunol ; 23(4): 594-604, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35354951

RESUMO

While T cell receptor (TCR) αß+CD8α+CD8ß- intraepithelial lymphocytes (CD8αα+ IELs) differentiate from thymic IEL precursors (IELps) and contribute to gut homeostasis, the transcriptional control of their development remains poorly understood. In the present study we showed that mouse thymocytes deficient for the transcription factor leukemia/lymphoma-related factor (LRF) failed to generate TCRαß+CD8αα+ IELs and their CD8ß-expressing counterparts, despite giving rise to thymus and spleen CD8αß+ T cells. LRF-deficient IELps failed to migrate to the intestine and to protect against T cell-induced colitis, and had impaired expression of the gut-homing integrin α4ß7. Single-cell RNA-sequencing found that LRF was necessary for the expression of genes characteristic of the most mature IELps, including Itgb7, encoding the ß7 subunit of α4ß7. Chromatin immunoprecipitation and gene-regulatory network analyses both defined Itgb7 as an LRF target. Our study identifies LRF as an essential transcriptional regulator of IELp maturation in the thymus and subsequent migration to the intestinal epithelium.


Assuntos
Linfócitos Intraepiteliais , Leucemia , Linfoma , Animais , Antígenos CD8/genética , Antígenos CD8/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Cadeias beta de Integrinas , Mucosa Intestinal/metabolismo , Linfócitos Intraepiteliais/metabolismo , Leucemia/metabolismo , Linfoma/metabolismo , Camundongos , Camundongos Knockout , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Fatores de Transcrição/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(14): e2213207120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36976763

RESUMO

Cellular senescence, a hallmark of aging, has been implicated in the pathogenesis of many major age-related disorders, including neurodegeneration, atherosclerosis, and metabolic disease. Therefore, investigating novel methods to reduce or delay the accumulation of senescent cells during aging may attenuate age-related pathologies. microRNA-449a-5p (miR-449a) is a small, noncoding RNA down-regulated with age in normal mice but maintained in long-living growth hormone (GH)-deficient Ames Dwarf (df/df) mice. We found increased fibroadipogenic precursor cells, adipose-derived stem cells, and miR-449a levels in visceral adipose tissue of long-living df/df mice. Gene target analysis and our functional study with miR-449a-5p have revealed its potential as a serotherapeutic. Here, we test the hypothesis that miR-449a reduces cellular senescence by targeting senescence-associated genes induced in response to strong mitogenic signals and other damaging stimuli. We demonstrated that GH downregulates miR-449a expression and accelerates senescence while miR-449a upregulation using mimetics reduces senescence, primarily through targeted reduction of p16Ink4a, p21Cip1, and the PI3K-mTOR signaling pathway. Our results demonstrate that miR-449a is important in modulating key signaling pathways that control cellular senescence and the progression of age-related pathologies.


Assuntos
MicroRNAs , Animais , Camundongos , Senescência Celular/genética , Hormônio do Crescimento/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
4.
J Cell Mol Med ; 28(7): e18221, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38509759

RESUMO

Gliomas are the most common tumours in the central nervous system. In the present study, we aimed to find a promising anti-glioma compound and investigate the underlying molecular mechanism. Glioma cells were subjected to the 50 candidate compounds at a final concentration of 10 µM for 72 h, and CCK-8 was used to evaluate their cytotoxicity. NPS-2143, an antagonist of calcium-sensing receptor (CASR), was selected for further study due to its potent cytotoxicity to glioma cells. Our results showed that NPS-2143 could inhibit the proliferation of glioma cells and induce G1 phase cell cycle arrest. Meanwhile, NPS-2143 could induce glioma cell apoptosis by increasing the caspase-3/6/9 activity. NPS-2143 impaired the immigration and invasion ability of glioma cells by regulating the epithelial-mesenchymal transition process. Mechanically, NPS-2143 could inhibit autophagy by mediating the AKT-mTOR pathway. Bioinformatic analysis showed that the prognosis of glioma patients with low expression of CASR mRNA was better than those with high expression of CASR mRNA. Gene set enrichment analysis showed that CASR was associated with cell adhesion molecules and lysosomes in glioma. The nude mice xenograft model showed NPS-2143 could suppress glioma growth in vivo. In conclusion, NPS-2143 can suppress the glioma progression by inhibiting autophagy.


Assuntos
Glioma , Naftalenos , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Camundongos , Apoptose , Autofagia , Linhagem Celular Tumoral , Proliferação de Células , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , Serina-Treonina Quinases TOR/metabolismo , Naftalenos/farmacologia
6.
Eur J Nutr ; 62(8): 3423-3431, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37668652

RESUMO

BACKGROUND: The association between coffee/caffeine consumption and obstructive sleep apnea (OSA) risk remains unclear. PURPOSE: To determine the relationship between coffee/caffeine consumption and the risk of OSA, using the Mendelian randomization (MR) method in the European population. METHODS: Two sets of coffee consumption-associated genetic variants were, respectively, extracted from the recent genome-wide meta-analysis (GWMA) and genome-wide association study (GWAS) of coffee consumption. Taking other caffeine sources into account, genetic variants associated with caffeine consumption from tea and plasma caffeine (reflecting total caffeine intake) were also obtained. The inverse variance weighted (IVW) technique was utilized as the primary analysis, supplemented by the MR-Egger, weighted-median, and MR-Pleiotropy RESidual Sum and Outlier (PRESSO) techniques. Leave-one-out (LOO) analysis was performed to assess whether the overall casual estimates were driven by a single SNP. Additional sensitivity analyses were performed using similar methods, while the genetic variants associated with confounders, e.g., body mass index and hypertension, were excluded. RESULTS: The IVW method demonstrated that coffee consumption GWMA (OR: 1.065, 95% CI 0.927-1.224, p = 0.376), coffee consumption GWAS (OR: 1.665, 95% CI 0.932-2.977, p = 0.086), caffeine from tea (OR: 1.198, 95% CI 0.936-1.534, p = 0.151), and blood caffeine levels (OR: 1.054, 95% CI 0.902-1.231, p = 0.508) were unlikely to be associated with the risk of OSA. The other three methods presented similar results, where no significant associations were found. No single genetic variant was driving the overall estimates by the LOO analysis. These findings were also supported by the sensitivity analyses with no confounding genetic variants. CONCLUSION: Our study found no association between coffee/caffeine consumption and the risk of OSA.


Assuntos
Café , Apneia Obstrutiva do Sono , Humanos , Cafeína , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Apneia Obstrutiva do Sono/genética , Chá
7.
Nutr J ; 22(1): 68, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38062512

RESUMO

OBJECTIVE: To investigate the relationship between dietary carotenoid intake and sleep duration. METHODS: Adults enrolled in the National Health and Nutrition Examination Survey (NHANES) 2007-2018 without missing information on dietary carotenoid intake (α-carotene, ß-carotene, ß-cryptoxanthin, lycopene, and lutein + zeaxanthin), sleep duration, and covariates were included. Participants' carotenoid consumption was divided into three groups by quartiles and sleep duration was grouped as short (< 7 h/night), optimal (7-8 h/night), and long (> 8 h/night). Multinominal logistic regression was constructed to examine the association between dietary carotenoid intake and sleep duration. Restricted cubic spline (RCS) regression was further utilized to explore their dose-response relationship. The weighted quantile sum (WQS) model was adopted to calculate the mixed and individual effect of 5 carotenoid sub-types on sleep duration. RESULTS: Multinominal logistic regression presented that people with higher intakes of α-carotene, ß-carotene, ß-cryptoxanthin, lycopene, and lutein + zeaxanthin were less likely to sleep too short or too long. Consistent with the findings from multinominal logistic regression, the RCS models suggested a reverse U-shaped relationship between sleep duration and carotenoid intakes. The mixed effects were also significant, where ß-cryptoxanthin and lutein + zeaxanthin were the top 2 contributors associated with the decreased risks of short sleep duration, while ß-carotene, α-carotene, and ß-cryptoxanthin were the main factors related to the lower risk of long sleep duration. CONCLUSION: Our study revealed that the American adults with optimal sleep duration were associated with more dietary carotenoid intake, in comparison to short or long sleepers.


Assuntos
Luteína , beta Caroteno , Adulto , Humanos , Estados Unidos , Licopeno , Inquéritos Nutricionais , Zeaxantinas , beta-Criptoxantina , Duração do Sono , Carotenoides , Dieta
8.
BMC Pulm Med ; 23(1): 254, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37430293

RESUMO

BACKGROUND: Ideal sedation and analgesia strategies for fiberoptic bronchoscopy have not been found. At present, propofol based sedation strategy still has some defects, such as respiratory depression and blood pressure drop. It is difficult to meet the requirements of safety and effectiveness at the same time. The aim of this study was to compare the clinical efficacy of propofol/remifentanil with propofol/esketamine for patient sedation during fiberoptic bronchoscopy. METHOD: Patients undergoing fiberoptic bronchoscopy were randomly assigned to propofol/ remifentanil (PR group; n = 42) or propofol/esketamine (PK group; n = 42) for sedation and analgesia. The primary outcome was the rate of transient hypoxia (oxygen saturation (SpO2) < 95%). The secondary outcomes are the intraoperative hemodynamics, including the changes in blood pressure, heart rate, the incidence of adverse reactions, the total amount of propofol usage were recorded, and the satisfaction level of patients and bronchoscopists. RESULTS: After sedation, the arterial pressure and heart rate of patients in the PK group were stable without significant decrease. Decreases in diastolic blood pressure, mean arterial pressure, and heart rate were observed in patients in the PR group (P < 0.05), although it was not of clinical relevance. The dosage of propofol in the PR group was significantly higher than that in the PK group (144 ± 38 mg vs. 125 ± 35 mg, P = 0.012). Patients in the PR group showed more transient hypoxia (SpO2 < 95%) during surgery (7 vs. 0, 0% versus 16.6%, P = 0.018), more intraoperative choking (28 vs. 7, P < 0.01), postoperative vomiting (22 vs. 13, P = 0.076) and vertigo (15 vs. 13, P = 0.003). Bronchoscopists in the PK group showed more satisfaction. CONCLUSION: Compared with remifentanil, the combination of esketamine with propofol in fiberoptic bronchoscopy leaded to more stable intraoperative hemodynamics, lower dosage of propofol, lower transient hypoxia rate, fewer incidence of adverse events, and greater bronchoscopists satisfaction.


Assuntos
Broncoscopia , Propofol , Humanos , Propofol/efeitos adversos , Remifentanil , Hipóxia/induzido quimicamente
9.
Immunity ; 39(2): 272-85, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23973223

RESUMO

Regulatory T (Treg) cells suppress inflammatory immune responses and autoimmunity caused by self-reactive T cells. The key Treg cell transcription factor Foxp3 is downregulated during inflammation to allow for the acquisition of effector T cell-like functions. Here, we demonstrate that stress signals elicited by proinflammatory cytokines and lipopolysaccharides lead to the degradation of Foxp3 through the action of the E3 ubiquitin ligase Stub1. Stub1 interacted with Foxp3 to promote its K48-linked polyubiquitination in an Hsp70-dependent manner. Knockdown of endogenous Stub1 or Hsp70 prevented Foxp3 degradation. Furthermore, the overexpression of Stub1 in Treg cells abrogated their ability to suppress inflammatory immune responses in vitro and in vivo and conferred a T-helper-1-cell-like phenotype. Our results demonstrate the critical role of the stress-activated Stub1-Hsp70 complex in promoting Treg cell inactivation, thus providing a potential therapeutic target for the intervention against autoimmune disease, infection, and cancer.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Células Cultivadas , Citocinas/metabolismo , Inibidores Enzimáticos , Células HEK293 , Proteínas de Choque Térmico HSP70/genética , Humanos , Imidazóis , Inflamação/genética , Inflamação/imunologia , Lipopolissacarídeos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fenótipo , Piridinas , Interferência de RNA , RNA Interferente Pequeno , Linfócitos T Auxiliares-Indutores/imunologia , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
10.
EMBO Rep ; 21(9): e49898, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32648345

RESUMO

Nutrient sensing by the mTOR complex 1 (mTORC1) requires its translocation to the lysosomal membrane. Upon amino acids removal, mTORC1 becomes cytosolic and inactive, yet its precise subcellular localization and the mechanism of inhibition remain elusive. Here, we identified Aster-C as a negative regulator of mTORC1 signaling. Aster-C earmarked a special rough ER subdomain where it sequestered mTOR together with the GATOR2 complex to prevent mTORC1 activation during nutrient starvation. Amino acids stimulated rapid disassociation of mTORC1 from Aster-C concurrently with assembly of COP I vesicles which escorted mTORC1 to the lysosomal membrane. Consequently, ablation of Aster-C led to spontaneous activation of mTORC1 and dissociation of TSC2 from lysosomes, whereas inhibition of COP I vesicle biogenesis or actin dynamics prevented mTORC1 activation. Together, these findings identified Aster-C as a missing link between lysosomal trafficking and mTORC1 activation by revealing an unexpected role of COP I vesicles in mTORC1 signaling.


Assuntos
Complexo I de Proteína do Envoltório , Lisossomos , Complexo I de Proteína do Envoltório/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transporte Proteico , Transdução de Sinais
11.
EMBO Rep ; 21(9): e50308, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32644293

RESUMO

The transcription factor forkhead box P3 (FOXP3) is essential for the development of regulatory T cells (Tregs) and their function in immune homeostasis. Previous studies have shown that in natural Tregs (nTregs), FOXP3 can be regulated by polyubiquitination and deubiquitination. However, the molecular players active in this pathway, especially those modulating FOXP3 by deubiquitination in the distinct induced Treg (iTreg) lineage, remain unclear. Here, we identify the ubiquitin-specific peptidase 44 (USP44) as a novel deubiquitinase for FOXP3. USP44 interacts with and stabilizes FOXP3 by removing K48-linked ubiquitin modifications. Notably, TGF-ß induces USP44 expression during iTreg differentiation. USP44 co-operates with USP7 to stabilize and deubiquitinate FOXP3. Tregs genetically lacking USP44 are less effective than their wild-type counterparts, both in vitro and in multiple in vivo models of inflammatory disease and cancer. These findings suggest that USP44 plays an important role in the post-translational regulation of Treg function and is thus a potential therapeutic target for tolerance-breaking anti-cancer immunotherapy.


Assuntos
Fatores de Transcrição Forkhead , Linfócitos T Reguladores , Fatores de Transcrição Forkhead/genética , Humanos , Inflamação/genética , Fator de Crescimento Transformador beta , Ubiquitina Tiolesterase , Peptidase 7 Específica de Ubiquitina
12.
J Fluoresc ; 32(5): 1755-1759, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35678900

RESUMO

Hg2+ is one of the most toxic heavy metal ions that exist in the environment and it forms large numbers of toxic binary compounds. Accurate and rapid detection of the concentration of heavy metal ions is a prerequisite technology to achieve pollution control and prevention. Fluorescent probes have attracted extensive attention because of their high sensitivity, prominent precision, convenient and fast visualization of heavy metals. Herein, we report multi-layered graphitic carbon nitride via a simple thermopolymerization treatment as a very effectual fluorescent probe for sensitive and selective detection of Hg2+ with a limit of detection as low as 1.14 nM.


Assuntos
Corantes Fluorescentes , Mercúrio , Íons , Metais
13.
Mol Ther ; 29(12): 3498-3511, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34111561

RESUMO

Cardiolipin is a mitochondrial signature phospholipid that plays a pivotal role in maintaining cardiac health. A loss of tetralinoleoyl cardiolipin (TLCL), the predominant cardiolipin species in the healthy mammalian heart, is implicated in the pathogenesis of coronary heart disease (CHD) through poorly defined mechanisms. Here, we identified acyl-coenzyme A:lysocardiolipin acyltransferase-1 (ALCAT1) as the missing link between hypoxia and CHD in an animal model of myocardial infarction (MI). ALCAT1 is an acyltransferase that promotes mitochondrial dysfunction in aging-related diseases by catalyzing pathological remodeling of cardiolipin. In support of a causative role of ALCAT1 in CHD, we showed that ALCAT1 expression was potently upregulated by MI, linking myocardial hypoxia to oxidative stress, TLCL depletion, and mitochondrial dysfunction. Accordingly, ablation of the ALCAT1 gene or pharmacological inhibition of the ALCAT1 enzyme by Dafaglitapin (Dafa), a potent and highly specific ALCAT1 inhibitor, not only restored TLCL levels but also mitochondrial respiration by attenuating signal transduction pathways mediated by hypoxia-inducible factor 1α (HIF-1α). Consequently, ablation or pharmacological inhibition of ALCAT1 by Dafa effectively mitigated CHD and its underlying pathogenesis, including dilated cardiomyopathy, left ventricle dysfunction, myocardial inflammation, fibrosis, and apoptosis. Together, the findings have provided the first proof-of-concept studies for targeting ALCAT1 as an effective treatment for CHD.


Assuntos
Cardiolipinas , Doença da Artéria Coronariana , Animais , Cardiolipinas/metabolismo , Doença da Artéria Coronariana/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Mamíferos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Estresse Oxidativo
14.
Ann Plast Surg ; 89(2): 225-229, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35943229

RESUMO

BACKGROUND: Random flaps are widely used for wound repair. However, flap necrosis is a serious complication leading to the failure of operation. Our previous study demonstrated a great proangiogenic potential of hypoxia-treated adipose-derived stem cells-extracellular vesicles (HT-ASC-EVs). Thus, we aim to evaluate the effect of HT-ASC-EVs in the survival and angiogenesis of random skin flap in rats. METHODS: Adipose-derived stem cells-extracellular vesicles were respectively isolated from adipose-derived stem cell culture medium of 3 donors via ultracentrifugation. The expression of hypoxia-inducible factor 1α (HIF-1α) and proangiogenic potential of HT-ASC-EVs and ASC-EVs were compared by co-culturing with human umbilical vein endothelial cells. Forty male Sprague-Dawley rats were randomly divided into 3 group (n = 10/group). A 9 × 3-cm random skin flap was separated from the underlying fascia with both sacral arteries sectioned on each rat. The survival and angiogenesis of flaps treated by ASC-EVs or HT-ASC-EVs were also compared. Laser Doppler flowmetry and immunohistochemistry were used to evaluate skin perfusion and angiogenesis of skin flaps on postoperative day 7. RESULTS: Hypoxia-treated adipose-derived stem cells-extracellular vesicles further improve the proliferation, migration, tube formation with upregulated HIF-1α, and VEGF expression of human umbilical vein endothelial cells in vitro, compared with ASC-EVs. In vivo, postoperatively injecting HT-ASC-EVs suppressed necrosis rate (29.1 ± 2.8% vs 59.2 ± 2.1%) and promoted the angiogenesis of skin flap including improved skin perfusion (803.2 ± 24.3 vs 556.3 ± 26.7 perfusion unit), increased number of CD31-positive cells, and upregulated expression of HIF-1α in vascular endothelium on postoperative day 7, compared with ASC-EVs. CONCLUSIONS: Intradermal injecting HT-ASC-EVs improve the survival of random skin flap by promoting HIF-1α-mediated angiogenesis in rat model.


Assuntos
Vesículas Extracelulares , Hipóxia , Animais , Células Endoteliais da Veia Umbilical Humana , Humanos , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Necrose/metabolismo , Neovascularização Fisiológica , Ratos , Ratos Sprague-Dawley , Células-Tronco/metabolismo
15.
BMC Oral Health ; 22(1): 203, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614431

RESUMO

OBJECTIVE: The present study was designed to explore endurable pressure intensity of different paranasal sinus mucosa in goats. METHOD: Mucosa commonly involved in maxillary sinus augmentation, including mucosa from maxillary sinus crest, maxillary sinus floor, and frontal sinus, were harvested in a computed tomography-guided manner. The obtained mucosa was then sectioned into square and irregular ones for maximum endurable pressure intensity determination and morphological observation, respectively. RESULTS: Thickness of paranasal sinus mucosa, as determined under morphological staining by an optical microscope with a graduated eyepiece, were calculated. And the results showed that the average thickness of maxillary sinus crest mucosa, floor mucosa, and frontal sinus mucosa in goats were 410.03 ± 65.97 µm, 461.33 ± 91.37 µm and 216.90 ± 46.47 µm, respectively. Significant differences between maxillary sinus crest and frontal sinus, maxillary sinus floor, and frontal sinus were observed (P < 0.05). Maximum endurable pressure intensity was determined by utilizing a self-made clamp device and the results revealed maximum endurable pressure intensity of maxillary sinus crest mucosa, floor mucosa and frontal sinus mucosa in goats were 260.08 ± 80.12Kpa, 306.90 ± 94.37Kpa and 121.72 ± 31.72Kpa, respectively. Also, a statistically significant difference was observed when comparing the endurable pressure intensity between maxillary sinus crest and frontal sinus, maxillary sinus floor, and frontal sinus (P < 0.05). Further correlation analysis also revealed a positive correlation between the thickness of mucosa of the maxillary sinus and frontal sinus and maximum endurable pressure intensity (P < 0.05). CONCLUSION: Mucosal thickness and maximum endurable pressure intensity of maxillary sinus crest and floor were larger than that of frontal sinus mucosa and a positive correlation between the thickness of mucosa and endurable pressure intensity was observed. Our results thus might provide an experimental basis and guidance for mucosa-related problems involved maxillary sinus augmentation.


Assuntos
Levantamento do Assoalho do Seio Maxilar , Animais , Cabras , Humanos , Maxila , Seio Maxilar/anatomia & histologia , Seio Maxilar/diagnóstico por imagem , Mucosa , Levantamento do Assoalho do Seio Maxilar/métodos
17.
PLoS Pathog ; 13(12): e1006773, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29281729

RESUMO

The histone demethylase LSD1 has been known as a key transcriptional coactivator for DNA viruses such as herpes virus. Inhibition of LSD1 was found to block viral genome transcription and lytic replication of DNA viruses. However, RNA virus genomes do not rely on chromatin structure and histone association, and the role of demethylase activity of LSD1 in RNA virus infections is not anticipated. Here, we identify that, contrary to its role in enhancing DNA virus replication, LSD1 limits RNA virus replication by demethylating and activating IFITM3 which is a host restriction factor for many RNA viruses. We have found that LSD1 is recruited to demethylate IFITM3 at position K88 under IFNα treatment. However, infection by either Vesicular Stomatitis Virus (VSV) or Influenza A Virus (IAV) triggers methylation of IFITM3 by promoting its disassociation from LSD1. Accordingly, inhibition of the enzymatic activity of LSD1 by Trans-2-phenylcyclopropylamine hydrochloride (TCP) increases IFITM3 monomethylation which leads to more severe disease outcomes in IAV-infected mice. In summary, our findings highlight the opposite role of LSD1 in fighting RNA viruses comparing to DNA viruses infection. Our data suggest that the demethylation of IFITM3 by LSD1 is beneficial for the host to fight against RNA virus infection.


Assuntos
Histona Desmetilases/metabolismo , Vírus da Influenza A/patogenicidade , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Sítios de Ligação , Progressão da Doença , Inibidores Enzimáticos/farmacologia , Feminino , Células HEK293 , Histona Desmetilases/antagonistas & inibidores , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Metilação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Modelos Biológicos , Infecções por Orthomyxoviridae/etiologia , Infecções por Orthomyxoviridae/metabolismo , Proteínas de Ligação a RNA/química , Tranilcipromina/farmacologia , Vírus da Estomatite Vesicular Indiana/patogenicidade , Vírus da Estomatite Vesicular Indiana/fisiologia , Replicação Viral , Zika virus/patogenicidade , Zika virus/fisiologia
18.
J Immunol ; 199(5): 1716-1728, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28754678

RESUMO

The CD4+ lineage-specific transcription factor Thpok is required for intrathymic CD4+ T cell differentiation and, together with its homolog LRF, supports CD4+ T cell helper effector responses. However, it is not known whether these factors are needed for the regulatory T cell (Treg) arm of MHC class II responses. In this study, by inactivating in mice the genes encoding both factors in differentiated Tregs, we show that Thpok and LRF are redundantly required to maintain the size and functions of the postthymic Treg pool. They support IL-2-mediated gene expression and the functions of the Treg-specific factor Foxp3. Accordingly, Treg-specific disruption of Thpok and Lrf causes a lethal inflammatory syndrome similar to that resulting from Treg deficiency. Unlike in conventional T cells, Thpok and LRF functions in Tregs are not mediated by their repression of the transcription factor Runx3. Additionally, we found that Thpok is needed for the differentiation of thymic Treg precursors, an observation in line with the fact that Foxp3+ Tregs are CD4+ cells. Thus, a common Thpok-LRF node supports both helper and regulatory arms of MHC class II responses.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Linfócitos T Reguladores/imunologia , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Proteínas de Ligação a DNA/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Interleucina-2/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T Reguladores/microbiologia , Fatores de Transcrição/genética
19.
Adv Exp Med Biol ; 1128: 185-225, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31062331

RESUMO

Accumulating evidence suggests that Alzheimer's disease may manifest as a metabolic disorder with pathology and/or dysfunction in numerous tissues. Adults with Alzheimer's disease suffer with significantly more comorbidities than demographically matched Medicare beneficiaries (Zhao et al, BMC Health Serv Res 8:108, 2008b). Reciprocally, comorbid health conditions increase the risk of developing Alzheimer's disease (Haaksma et al, PLoS One 12(5):e0177044, 2017). Type 2 diabetes mellitus is especially notable as the disease shares many overlapping pathologies observed in patients with Alzheimer's disease, including hyperglycemia, hyperinsulinemia, insulin resistance, glucose intolerance, dyslipidemia, inflammation, and cognitive dysfunction, as described in Chap. 8 of this book (Yoshitake et al, Neurology 45(6):1161-1168, 1995; Leibson et al, Am J Epidemiol 145(4):301-308, 1997; Ott et al, Neurology 53(9):1937-1942, 1999; Voisin et al, Rev Med Interne 24(Suppl 3):288s-291s, 2003; Janson et al. Diabetes 53(2):474-481, 2004; Ristow M, J Mol Med (Berl) 82(8):510-529, 2004; Whitmer et al, BMJ 330(7504):1360, 2005, Curr Alzheimer Res 4(2):103-109, 2007; Ohara et al, Neurology 77(12):1126-1134, 2011). Although nondiabetic older adults also experience age-related cognitive decline, diabetes is uniquely associated with a twofold increased risk of Alzheimer's disease, as described in Chap. 2 of this book (Yoshitake et al, Neurology 45(6):1161-1168, 1995; Leibson et al, Am J Epidemiol 145(4):301-308, 1997; Ott et al. Neurology 53(9):1937-1942, 1999; Ohara et al, Neurology 77(12):1126-1134, 2011). Good glycemic control has been shown to improve cognitive status (Cukierman-et al, Diabetes Care 32(2):221-226, 2009), and the use of insulin sensitizers is correlated with a lower rate of cognitive decline in older adults (Morris JK, Burns JM, Curr Neurol Neurosci Rep 12(5):520-527, 2012). At the molecular level, the mechanistic/mammalian target of rapamycin (mTOR) plays a key role in maintaining energy homeostasis. Nutrient availability and cellular stress information, both extracellular and intracellular, are integrated and transduced through mTOR signaling pathways. Aberrant regulation of mTOR occurs in the brains of patients with Alzheimer's disease and in numerous tissues of individuals with type 2 diabetes (Mannaa et al, J Mol Med (Berl) 91(10):1167-1175, 2013). Moreover, modulating mTOR activity with a pharmacological inhibitor, rapamycin, provides wide-ranging health benefits, including healthy life span extension in numerous model organisms (Vellai et al, Nature 426(6967):620, 2003; Jia et al, Development 131(16):3897-3906, 2004; Kapahi et al, Curr Biol 14(10):885-890, 2004; Kaeberlein et al, Science 310(5751):1193-1196, 2005; Powers et al, Genes Dev 20(2):174-184, 2006; Harrison et al, Nature 460(7253):392-395, 2009; Selman et al, Science 326(5949):140-144, 2009; Sharp ZD, Strong R, J Gerontol A Biol Sci Med Sci 65(6):580-589, 2010), which underscores its importance to overall organismal health and longevity. In this chapter, we discuss the physiological role of mTOR signaling and the consequences of mTOR dysregulation in the brain and peripheral tissues, with emphasis on its relevance to the development of Alzheimer's disease and link to type 2 diabetes.


Assuntos
Doença de Alzheimer/patologia , Diabetes Mellitus Tipo 2/patologia , Transdução de Sinais , Serina-Treonina Quinases TOR/fisiologia , Humanos
20.
Hepatology ; 66(1): 136-151, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28194813

RESUMO

Current treatment of intrahepatic cholangiocarcinoma (ICC) remains ineffective because knowledge of ICC carcinogenesis is unclear. Increasing evidence suggests that microRNAs (miRNAs), including miR-191, play an important role in tumorigenesis; but expression and biological functions of miR-191 in ICC remain to be established. This study investigated the functions and underlying mechanisms of miR-191 in ICC. ICC miRNA profiles were generated in five pairs of ICC and matched to normal bile duct tissues by next-generation sequencing technology; ICC miRNA profiles were verified in 18 pairs of ICC tissues and normal bile duct tissues by quantitative RT-PCR. The miR-191-associated mechanisms in ICC were investigated in vitro and in vivo, and clinical outcomes associated with miR-191 were correlated in 84 patients. Our results showed that miR-191 expression was significantly increased in ICC compared with the adjacent normal bile duct tissues (P < 0.001). Overexpression of miR-191 promoted proliferation, invasion, and migration of cholangiocarcinoma cells in vitro and in vivo. The elevated miR-191 expression reduced the expression level of ten-eleven translocation 1 (TET1)-a direct target gene of miR-191 in ICC, which catalyzes demethylation. The reduced TET1 expression level allowed the methylated CpG-rich regions at the p53 gene transcription start site stay methylated, leading to reduced p53 expression level, which compromises p53's anticancer vigor. Finally, miR-191 was found to be an independent risk factor for poor prognosis in patients with ICC (overall survival, hazard ratio = 3.742, 95% confidence interval 2.080-6.733, P < 0.001; disease-free survival, hazard ratio = 2.331, 95% confidence interval 1.346-4.037, P = 0.003). CONCLUSION: Our results suggest that overexpressed miR-191 is associated with ICC progression through the miR-191/TET1/p53 pathway. (Hepatology 2017;66:136-151).


Assuntos
Neoplasias dos Ductos Biliares/genética , Colangiocarcinoma/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Oxigenases de Função Mista/genética , Proteínas Proto-Oncogênicas/genética , Animais , Neoplasias dos Ductos Biliares/patologia , Biópsia por Agulha , Movimento Celular/genética , Proliferação de Células/genética , Colangiocarcinoma/patologia , Estudos de Coortes , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Nus , Metástase Neoplásica/genética , Estudos Retrospectivos , Sensibilidade e Especificidade , Transdução de Sinais , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa