Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982790

RESUMO

Osteomyelitis is a difficult-to-treat disease with high chronification rates. First studies suggest increases in mitochondrial fission and mitochondrial dysfunction as possible contributors to the accumulation of intracellular reactive oxygen species and thereby to the cell death of infected bone cells. The aim of the present study is to analyze the ultrastructural impact of bacterial infection on osteocytic and osteoblastic mitochondria. Human infected bone tissue samples were visualized via light microscopy and transmission electron microscopy. Osteoblasts, osteocytes and their mitochondria were analyzed histomorphometrically and compared with the control group of noninfectious human bone tissue samples. The results depicted swollen hydropic mitochondria including depleted cristae and a decrease in matrix density in the infected samples. Furthermore, perinuclear clustering of mitochondria could also be observed regularly. Additionally, increases in relative mitochondrial area and number were found as a correlate for increased mitochondrial fission. In conclusion, mitochondrial morphology is altered during osteomyelitis in a comparable way to mitochondria from hypoxic tissues. This gives new perspectives on the treatment strategies since the manipulation of mitochondrial dynamics may improve bone cell survival as a potential new target for the therapy of osteomyelitis.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Humanos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Microscopia Eletrônica de Transmissão , Espécies Reativas de Oxigênio/metabolismo , Osteoblastos/metabolismo , Dinâmica Mitocondrial/fisiologia
2.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37175421

RESUMO

Angiogenesis is the process of new blood vessels growing from existing vasculature. Visualizing them as a three-dimensional (3D) model is a challenging, yet relevant, task as it would be of great help to researchers, pathologists, and medical doctors. A branching analysis on the 3D model would further facilitate research and diagnostic purposes. In this paper, a pipeline of vision algorithms is elaborated to visualize and analyze blood vessels in 3D from formalin-fixed paraffin-embedded (FFPE) granulation tissue sections with two different staining methods. First, a U-net neural network is used to segment blood vessels from the tissues. Second, image registration is used to align the consecutive images. Coarse registration using an image-intensity optimization technique, followed by finetuning using a neural network based on Spatial Transformers, results in an excellent alignment of images. Lastly, the corresponding segmented masks depicting the blood vessels are aligned and interpolated using the results of the image registration, resulting in a visualized 3D model. Additionally, a skeletonization algorithm is used to analyze the branching characteristics of the 3D vascular model. In summary, computer vision and deep learning is used to reconstruct, visualize and analyze a 3D vascular model from a set of parallel tissue samples. Our technique opens innovative perspectives in the pathophysiological understanding of vascular morphogenesis under different pathophysiological conditions and its potential diagnostic role.


Assuntos
Imageamento Tridimensional , Redes Neurais de Computação , Imageamento Tridimensional/métodos , Algoritmos , Fenômenos Fisiológicos Cardiovasculares , Morfogênese , Processamento de Imagem Assistida por Computador
3.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36613952

RESUMO

Osteoporotic fractures are often linked to persisting chronic pain and poor healing outcomes. Substance P (SP), α-calcitonin gene-related peptide (α-CGRP) and sympathetic neurotransmitters are involved in bone remodeling after trauma and nociceptive processes, e.g., fracture-induced hyperalgesia. We aimed to link sensory and sympathetic signaling to fracture healing and fracture-induced hyperalgesia under osteoporotic conditions. Externally stabilized femoral fractures were set 28 days after OVX in wild type (WT), α-CGRP- deficient (α-CGRP -/-), SP-deficient (Tac1-/-) and sympathectomized (SYX) mice. Functional MRI (fMRI) was performed two days before and five and 21 days post fracture, followed by µCT and biomechanical tests. Sympathectomy affected structural bone properties in the fracture callus whereas loss of sensory neurotransmitters affected trabecular structures in contralateral, non-fractured bones. Biomechanical properties were mostly similar in all groups. Both nociceptive and resting-state (RS) fMRI revealed significant baseline differences in functional connectivity (FC) between WT and neurotransmitter-deficient mice. The fracture-induced hyperalgesia modulated central nociception and had robust impact on RS FC in all groups. The changes demonstrated in RS FC in fMRI might potentially be used as a bone traumata-induced biomarker regarding fracture healing under pathophysiological musculoskeletal conditions. The findings are of clinical importance and relevance as they advance our understanding of pain during osteoporotic fracture healing and provide a potential imaging biomarker for fracture-related hyperalgesia and its temporal development. Overall, this may help to reduce the development of chronic pain after fracture thereby improving the treatment of osteoporotic fractures.


Assuntos
Dor Crônica , Fraturas por Osteoporose , Animais , Feminino , Camundongos , Calo Ósseo , Peptídeo Relacionado com Gene de Calcitonina , Consolidação da Fratura/fisiologia , Hiperalgesia/etiologia , Fraturas por Osteoporose/diagnóstico por imagem , Ovariectomia , Sistema Nervoso Periférico
4.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35562962

RESUMO

Mitochondria play a crucial role in cell physiology and pathophysiology. In this context, mitochondrial dynamics and, subsequently, mitochondrial ultrastructure have increasingly become hot topics in modern research, with a focus on mitochondrial fission and fusion. Thus, the dynamics of mitochondria in several diseases have been intensively investigated, especially with a view to developing new promising treatment options. However, the majority of recent studies are performed in highly energy-dependent tissues, such as cardiac, hepatic, and neuronal tissues. In contrast, publications on mitochondrial dynamics from the orthopedic or trauma fields are quite rare, even if there are common cellular mechanisms in cardiovascular and bone tissue, especially regarding bone infection. The present report summarizes the spectrum of mitochondrial alterations in the cardiovascular system and compares it to the state of knowledge in the musculoskeletal system. The present paper summarizes recent knowledge regarding mitochondrial dynamics and gives a short, but not exhaustive, overview of its regulation via fission and fusion. Furthermore, the article highlights hypoxia and its accompanying increased mitochondrial fission as a possible link between cardiac ischemia and inflammatory diseases of the bone, such as osteomyelitis. This opens new innovative perspectives not only for the understanding of cellular pathomechanisms in osteomyelitis but also for potential new treatment options.


Assuntos
Dinâmica Mitocondrial , Osteomielite , Humanos , Mitocôndrias/fisiologia , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/metabolismo , Miócitos Cardíacos/metabolismo , Osteoblastos/metabolismo , Osteomielite/metabolismo
5.
Dermatology ; 237(2): 296-302, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32344413

RESUMO

BACKGROUND: Little information is available about the complexity and function of skin cells contributing to the high stability of tattoos. It has been shown that dermal macrophages play an important role in the storage and maintenance of pigment particles. By contrast, the impact of dermal fibroblasts, forming the connective tissue of the skin, on the stability of the tattoo is not known. METHOD: In this study, we compared the cell number and the particle load in dermal macrophages versus dermal fibroblasts, isolated from tail skin of tattooed mice. RESULTS: Microscopic analysis revealed that both cell populations contained the tattoo particles, although in largely different amounts. A small number of macrophages with high side scatter intensity contained a large quantity of pigment particles, whereas a high number of dermal fibroblasts harbored only a few pigment particles. Using the CD64dtr mouse model that allows for selective, diphtheria toxin-mediated depletion of macrophages, we have previously shown that macrophages hold the tattoo in place by capture-release and recapture cycles. In the tattooed skin of macrophage-depleted mice, the content of pigment particles in fibroblasts did not change; however, the total number of fibroblasts carrying particles increased. CONCLUSION: The present study demonstrates that dermal macrophages and fibroblasts contribute in different ways to the tattoo stability and further improves our knowledge on tattoo persistence.


Assuntos
Corantes , Derme/citologia , Fibroblastos/fisiologia , Macrófagos/fisiologia , Tatuagem , Animais , Contagem de Células , Tinta , Camundongos , Microscopia
6.
Knee Surg Sports Traumatol Arthrosc ; 29(2): 417-421, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32277263

RESUMO

PURPOSE: Traumatic lesions of articular cartilage represent a crucial risk factor for osteoarthritis. Even if several strategies exist to treat such damages, the optimal solution has not yet been found. A new strategy represents the scaffold-free spheroid-based autologous chondrocyte transplantation. In this method, spheroids of chondrocytes are synthesized after chondrocyte isolation and expansion, followed by the implantation in a second intervention. METHODS: Fine Jamshidi-needle biopsies from five patients (one from each patient, Ø 2 mm) treated with a spheroid-based autologous chondrocyte implantation (ACI) after traumatic lesions of the articular cartilage of the knee were analysed histologically and immunohistologically for collagen II, collagen X and aggrecan expression. The indication for a second look arthroscopy was given by arthrofibrosis or meniscus-lesions, respectively. The time between ACI and second-look arthroscopy ranged between 6 and 16 months. RESULTS: In all patients, the histological examinations revealed an avascular cartilage tissue with a homogenic extracellular matrix. The subchondral bone neither showed bleeding, necrosis nor hypertrophy. A homogenous alcian blue staining indicated high amounts of mucopolysaccharides and glycosaminoglycans. Collagen II staining was highly positive, whereas collagen X staining was negative in every patient, ruling out hypertrophic chondrocyte differentiation. In addition, intense aggrecan staining indicated a strong expression of this extracellular matrix component. CONCLUSION: The present case series represents the first histological and immunohistological analyses of spheroid-based ACI in humans. Spheroid-based ACI revealed excellent histological results regarding the regeneration of hyaline articular cartilage. These results indicate that spheroid based ACI is a promising strategy for treating traumatic lesions of the articular cartilage of the knee.


Assuntos
Doenças das Cartilagens/cirurgia , Cartilagem Articular/cirurgia , Condrócitos/transplante , Articulação do Joelho/cirurgia , Procedimentos Ortopédicos/métodos , Adulto , Agrecanas/metabolismo , Artroscopia/métodos , Cartilagem Articular/patologia , Condrócitos/patologia , Colágeno/metabolismo , Feminino , Glicosaminoglicanos/metabolismo , Humanos , Imuno-Histoquímica/métodos , Masculino , Pessoa de Meia-Idade , Cirurgia de Second-Look , Transplante Autólogo/métodos
7.
Int J Mol Sci ; 21(2)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936403

RESUMO

The peripheral nervous system modulates bone repair under physiological and pathophysiological conditions. Previously, we reported an essential role for sensory neuropeptide substance P (SP) and sympathetic nerve fibers (SNF) for proper fracture healing and bone structure in a murine tibial fracture model. A similar distortion of bone microarchitecture has been described for mice lacking the sensory neuropeptide α-calcitonin gene-related peptide (α-CGRP). Here, we hypothesize that loss of SP, α-CGRP, and SNF modulates inflammatory and pain-related processes and also affects bone regeneration during fracture healing under postmenopausal conditions. Intramedullary fixed femoral fractures were set to 28 days after bilateral ovariectomy (OVX) in female wild type (WT), SP-, α-CGRP-deficient, and sympathectomized (SYX) mice. Locomotion, paw withdrawal threshold, fracture callus maturation and numbers of TRAP-, CD4-, CD8-, F4/80-, iNos-, and Arg1-positive cells within the callus were analyzed. Nightly locomotion was reduced in unfractured SP-deficient and SYX mice after fracture. Resistance to pressure was increased for the fractured leg in SP-deficient mice during the later stages of fracture healing, but was decreased in α-CGRP-deficient mice. Hypertrophic cartilage area was increased nine days after fracture in SP-deficient mice. Bony callus maturation was delayed in SYX mice during the later healing stages. In addition, the number of CD 4-positive cells was reduced after five days and the number of CD 8-positive cells was additionally reduced after 21 days in SYX mice. The number of Arg1-positive M2 macrophages was higher in α-CGRP-deficient mice five days after fracture. The alkaline phosphatase level was increased in SYX mice 16 days after fracture. Absence of α-CGRP appears to promote M2 macrophage polarization and reduces the pain threshold, but has no effect on callus tissue maturation. Absence of SP reduces locomotion, increases the pain-threshold, and accelerates hypertrophic callus tissue remodeling. Destruction of SNF reduces locomotion after fracture and influences bony callus tissue remodeling during the later stages of fracture repair, whereas pain-related processes are not affected.


Assuntos
Consolidação da Fratura/fisiologia , Células Receptoras Sensoriais/patologia , Sistema Nervoso Simpático/fisiopatologia , Fraturas da Tíbia/terapia , Animais , Calo Ósseo/efeitos dos fármacos , Calo Ósseo/crescimento & desenvolvimento , Peptídeo Relacionado com Gene de Calcitonina , Cartilagem/efeitos dos fármacos , Cartilagem/crescimento & desenvolvimento , Feminino , Fêmur/efeitos dos fármacos , Fêmur/crescimento & desenvolvimento , Fêmur/patologia , Humanos , Camundongos , Osteogênese/genética , Substância P/farmacologia , Fraturas da Tíbia/patologia
8.
Int J Mol Sci ; 21(14)2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674266

RESUMO

Cilia are cellular organelles that project from the cell. They occur in nearly all non-hematopoietic tissues and have different functions in different tissues. In mesenchymal tissues primary cilia play a crucial role in the adequate morphogenesis during embryological development. In mature articular cartilage, primary cilia fulfil chemo- and mechanosensitive functions to adapt the cellular mechanisms on extracellular changes and thus, maintain tissue homeostasis and morphometry. Ciliary abnormalities in osteoarthritic cartilage could represent pathophysiological relationships between ciliary dysfunction and tissue deformation. Nevertheless, the molecular and pathophysiological relationships of 'Primary Cilia' (PC) in the context of osteoarthritis is not yet fully understood. The present review focuses on the current knowledge about PC and provide a short but not exhaustive overview of their role in cartilage.


Assuntos
Cartilagem Articular/patologia , Cartilagem Articular/fisiologia , Cílios/patologia , Cílios/fisiologia , Animais , Homeostase/fisiologia , Humanos , Mecanotransdução Celular/fisiologia , Morfogênese/fisiologia , Osteoartrite/patologia
9.
Int Orthop ; 39(12): 2495-501, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26432574

RESUMO

PURPOSE: Mesenchymal progenitor cells (MPCs) are capable of differentiating into osteo/chondrogenic cells to contribute substantially to heterotopic ossification (HO). This study aimed to examine the impact of hypoxia on MPCs in the aetiology of HO. METHODS: MPCs from human normal and HO skeletal tissue were cultivated under normoxia and hypoxia. Gene expression of factors which have a key role in HO aetiology (BMPs, COX-1 and COX-2, etc.) were examined by real-time PCR. Tissue of both groups was analysed by immunohistochemistry. RESULTS: Under hypoxia, COX-1, -2 and SOX-9 gene expression was elevated in HO MPCs, whereas in normal muscle tissue only COX-2 was upregulated. MPCs from HO had a significantly elevated gene expression of BMP-4 and decreased expression of BMP-1 and HIF-1 under hypoxia compared to normal MPCs. Immunohistochemistry detected no significant differences between normal and HO tissue. CONCLUSIONS: Hypoxia causes an enhanced gene expression of factors, which have a key role in HO pathophysiology. A better understanding of this entity will possibly allow reducing HO rates in orthopaedic and trauma surgery.


Assuntos
Hipóxia/metabolismo , Células-Tronco Mesenquimais/metabolismo , Músculo Esquelético/metabolismo , Ossificação Heterotópica/etiologia , Adulto , Idoso , Feminino , Citometria de Fluxo , Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
10.
Biopreserv Biobank ; 21(2): 200-207, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36367703

RESUMO

Biobanking is becoming increasingly important as a key tool for precision medicine, but neither biobanking nor precision medicine itself have generally been integrated in medical curricula. However, most medical students will encounter these topics in their future careers as physicians or researchers. The European Union (EU)-funded project eduBRoTHER aims to close this gap of professional input. Since the academic year 2020/21, students at the Faculty of Medicine of Pilsen-Charles University and the Faculty of Medicine of the University of Regensburg have been offered an innovative core elective subject that focuses on biobanking and precision medicine issues, using the concept of blended learning.


Assuntos
Bancos de Espécimes Biológicos , Medicina de Precisão , Humanos , Currículo , Estudantes
11.
Biopreserv Biobank ; 21(2): 149-157, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35704045

RESUMO

One major goal of biobanks is to provide the best possible biospecimen quality for research use. This can be achieved, notably in accredited structures, by using standardized procedures for collection, processing, and storage of biosamples and associated data. Since tissue samples of a clinical biobank are commonly collected at surgical theaters in satellite locations or hospitals in remote areas, adequate temporary storage of the biosample is mandatory to maintain optimal sample quality. In cases where immediate snap freezing of the collected material is possible, interim storage of the samples in portable dewars filled with liquid nitrogen (LN2) is a widely used method. Therefore, the ideal dewar size and maximum storage time need to be considered to maintain an optimal biospecimen quality. In addition, the nature of the cryotube material is an important aspect for keeping the biosample safe while storing it in LN2. The objective of this study was to test different dewar vessels with respect to LN2 volume and consumption and to analyze the impact of LN2 contact on cryotube material through scanning electron microscopy.


Assuntos
Bancos de Espécimes Biológicos , Nitrogênio , Congelamento
12.
Cells ; 12(2)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36672212

RESUMO

The understanding of macrophages and their pathophysiological role has dramatically changed within the last decades. Macrophages represent a very interesting cell type with regard to biomaterial-based tissue engineering and regeneration. In this context, macrophages play a crucial role in the biocompatibility and degradation of implanted biomaterials. Furthermore, a better understanding of the functionality of macrophages opens perspectives for potential guidance and modulation to turn inflammation into regeneration. Such knowledge may help to improve not only the biocompatibility of scaffold materials but also the integration, maturation, and preservation of scaffold-cell constructs or induce regeneration. Nowadays, macrophages are classified into two subpopulations, the classically activated macrophages (M1 macrophages) with pro-inflammatory properties and the alternatively activated macrophages (M2 macrophages) with anti-inflammatory properties. The present narrative review gives an overview of the different functions of macrophages and summarizes the recent state of knowledge regarding different types of macrophages and their functions, with special emphasis on tissue engineering and tissue regeneration.


Assuntos
Materiais Biocompatíveis , Macrófagos , Humanos , Macrófagos/metabolismo , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/metabolismo , Inflamação/metabolismo , Engenharia Tecidual , Cicatrização
13.
Pathol Res Pract ; 237: 154036, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35907280

RESUMO

The anterior cruciate ligament (ACL) plays a significant role in knee stability, protects the joint under multiple loading conditions and shows complex biomechanics. Beside mechanical stability, the ACL seems to play a crucial role in proprioception, and it is well known, that ACL injuries can cause functional deficits due to decreased proprioception. However, the mechanism of proprioception is not completely understood yet. In this context, primary cilia (PC), which play a significant role in the signaling between the intra- and extracellular space, could be of interest. However, until today, primary cilia are not yet described in human ACL. In total, seven human ACL's underwent transmission electron microscopical examination. Three cadaveric ACL's and four freshly injured ACL's were examined. Single cells of each ACL were examined regarding the presence of axonemes or basal bodies, which represent components of a PC. In total, 276 cells of the cadaveric ACL's and 180 cells of the injured ACL's were examined. Basal bodies could be detected in three of the four specimens of the injured ACL's as well as in one of the three cadaveric ACL's, resulting in a mean positivity of 2.54% in the cadaveric group and 2.78% in the injured group. In case of PC-presence, only one PC per cell could be detected. No statistically significant difference regarding the frequency could be detected between both groups. In this pilot-study, we present for the first time an ultrastructural study of human ACLs with respect to the occurrence of PC and any structural and morphological features of these complex and dynamic cell organelles. PCs are present in almost all non-hematopoietic tissues of the human body. However, there are different reports on the number, incidence, orientation, and morphology of these cell organelles in the respective tissues. Compared to other tissues and ligaments of other species, we found a significantly lower rate of PC positive cells. This observation might represent a tissue-specific characteristic of ACL tissue. However, our observations need to be explored in more detail in further studies.


Assuntos
Lesões do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Humanos , Ligamento Cruzado Anterior/anatomia & histologia , Ligamento Cruzado Anterior/fisiologia , Projetos Piloto , Cílios , Articulação do Joelho , Cadáver
14.
Cells ; 11(18)2022 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-36139409

RESUMO

Synthetic macroporous biomaterials are widely used in the field of skin tissue engineering to mimic membrane functions of the native dermis. Biomaterial designs can be subclassified with respect to their shape in fibrous designs, namely fibers, meshes or fleeces, respectively, and porous designs, such as sponges and foams. However, synthetic matrices often have limitations regarding unfavorable foreign body responses (FBRs). Severe FBRs can result in unfavorable disintegration and rejection of an implant, whereas mild FBRs can lead to an acceptable integration of a biomaterial. In this context, comparative in vivo studies of different three-dimensional (3D) matrix designs are rare. Especially, the differences regarding FBRs between synthetically derived filamentous fleeces and sponge-like constructs are unknown. In the present study, the FBRs on two 3D matrix designs were explored after 25 days of subcutaneous implantation in a porcine model. Cellular reactions were quantified histopathologically to investigate in which way the FBR is influenced by the biomaterial architecture. Our results show that FBR metrics (polymorph-nucleated cells and fibrotic reactions) were significantly affected according to the matrix designs. Our findings contribute to a better understanding of the 3D matrix tissue interactions and can be useful for future developments of synthetically derived skin substitute biomaterials.


Assuntos
Materiais Biocompatíveis , Pele Artificial , Animais , Fibrose , Reação a Corpo Estranho , Suínos , Engenharia Tecidual/métodos
15.
Nat Commun ; 12(1): 3006, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021143

RESUMO

Coronavirus disease 2019 (COVID-19) can lead to pneumonia and hyperinflammation. Here we show a sensitive method to measure polyclonal T cell activation by downstream effects on responder cells like basophils, plasmacytoid dendritic cells, monocytes and neutrophils in whole blood. We report a clear T cell hyporeactivity in hospitalized COVID-19 patients that is pronounced in ventilated patients, associated with prolonged virus persistence and reversible with clinical recovery. COVID-19-induced T cell hyporeactivity is T cell extrinsic and caused by plasma components, independent of occasional immunosuppressive medication of the patients. Monocytes respond stronger in males than females and IL-2 partially restores T cell activation. Downstream markers of T cell hyporeactivity are also visible in fresh blood samples of ventilated patients. Based on our data we developed a score to predict fatal outcomes and identify patients that may benefit from strategies to overcome T cell hyporeactivity.


Assuntos
COVID-19/imunologia , Inflamação/imunologia , Ativação Linfocitária/imunologia , Pneumonia/imunologia , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Adulto , Idoso , Basófilos/imunologia , COVID-19/virologia , Células Cultivadas , Células Dendríticas/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Neutrófilos/imunologia , SARS-CoV-2/fisiologia , Adulto Jovem
16.
Mech Ageing Dev ; 189: 111265, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32446790

RESUMO

Mice with an overall deletion of the sensory neuropeptide α-calcitonin gene-related peptide (α-CGRP) develop an age-dependent osteopenic bone phenotype. Underlying molecular mechanisms of how αCGRP affects bone cell metabolism are not well understood. This study aims to characterize differences in metabolic parameters of osteoblast-like cells (OB) and differentiated bone marrow-derived macrophages (BMM)/osteoclast (OC) cultures isolated from 3 month (3 m) and 9 month old (9 m) α-CGRP-deficient mice (-/-) and age-matched WT controls. All WT bone cell cultures endogenously produced and secreted α-CGRP. We found higher BMM but reduced OB numbers and reduced OB vitality after isolation from 9 m compared to 3 m mice, independent of genotype. Absence of α-CGRP reduced cell spreading, increased apoptosis rate throughout osteogenic differentiation, and reduced ALP activity during late osteogenic differentiation in 9 m OB-/- cultures, whereas minor effects were found in 3 m OB-/- cultures. Cathepsin K activity was reduced in 3 m OC-/- cultures. On the contrary, 9 m OC-/- cells demonstrated increased proliferation and caspase3/7 activity. The absence of α-CGRP influenced bone formation and resorption rate differently in bone cells from 3 and 9 m old mice. In summary we suggest, that an increase of dysfunctional mature osteoblasts might occur during aging and contribute to the development of the osteopenic bone phenotype in mature adult (9 m) α-CGRP-deficient mice.


Assuntos
Envelhecimento/metabolismo , Remodelação Óssea , Peptídeo Relacionado com Gene de Calcitonina/deficiência , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Envelhecimento/genética , Animais , Feminino , Camundongos , Camundongos Knockout
17.
Sci Rep ; 10(1): 14404, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873858

RESUMO

Molecular investigations are crucial for further developments in precision medicine. RNA sequencing, alone or in combination with further omic-analyses, resulted in new therapeutic strategies. In this context, biobanks represent infrastructures to store tissue samples and body fluids in combination with clinical data to promote research for new predictive and prognostic biomarkers as well as therapeutic candidate molecules. Until today, the optimal storage conditions are a matter of debate especially with view to the storage temperature. In this unique approach we compared parallel samples from the same tumour, one half stored at - 80 °C and one half in the vapor phase of liquid nitrogen, with almost identical pre-analytical conditions. We demonstrated that RNA isolated from breast cancer samples revealed significantly higher RINe-values after 10 years of storage in the vapor phase of liquid nitrogen compared to storage at - 80 °C. In contrast, no significant difference was found regarding the DIN-values after DNA isolation. Morphological changes of the nucleus and cytoplasm, especially in the samples stored at - 80 °C, gave insights to degenerative effects, most possibly due to the storage protocol and its respective peculiarities. In addition, our results indicate that exact point-to point documentation beginning at the sample preparation is mandatory.


Assuntos
Bancos de Espécimes Biológicos , Neoplasias da Mama/genética , Criopreservação/métodos , DNA/análise , RNA/análise , Manejo de Espécimes/métodos , Líquidos Corporais , Neoplasias da Mama/patologia , DNA/isolamento & purificação , Feminino , Congelamento , Humanos , Nitrogênio , RNA/isolamento & purificação
18.
Front Bioeng Biotechnol ; 8: 615520, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425878

RESUMO

Background: Studies with extracellular vesicles (EVs), including exosomes, isolated from mesenchymal stem cells (MSC) indicate benefits for the treatment of musculoskeletal pathologies as osteoarthritis (OA) and osteoporosis (OP). However, little is known about intercellular effects of EVs derived from pathologically altered cells that might influence the outcome by counteracting effects from "healthy" MSC derived EVs. We hypothesize, that EVs isolated from osteoblasts of patients with hip OA (coxarthrosis/CA), osteoporosis (OP), or a combination of both (CA/OP) might negatively affect metabolism and osteogenic differentiation of bone-marrow derived (B)MSCs. Methods: Osteoblasts, isolated from bone explants of CA, OP, and CA/OP patients, were compared regarding growth, viability, and osteogenic differentiation capacity. Structural features of bone explants were analyzed via µCT. EVs were isolated from supernatant of naïve BMSCs and CA, OP, and CA/OP osteoblasts (osteogenic culture for 35 days). BMSC cultures were stimulated with EVs and subsequently, cell metabolism, osteogenic marker gene expression, and osteogenic differentiation were analyzed. Results: Trabecular bone structure was different between the three groups with lowest number and highest separation in the CA/OP group. Viability and Alizarin red staining increased over culture time in CA/OP osteoblasts whereas growth of osteoblasts was comparable. Alizarin red staining was by trend higher in CA compared to OP osteoblasts after 35 days and ALP activity was higher after 28 and 35 days. Stimulation of BMSC cultures with CA, OP, and CA/OP EVs did not affect proliferation but increased caspase 3/7-activity compared to unstimulated BMSCs. BMSC viability was reduced after stimulation with CA and CA/OP EVs compared to unstimulated BMSCs or stimulation with OP EVs. ALP gene expression and activity were reduced in BMSCs after stimulation with CA, OP, and CA/OP EVs. Stimulation of BMSCs with CA EVs reduced Alizarin Red staining by trend. Conclusion: Stimulation of BMSCs with EVs isolated from CA, OP, and CA/OP osteoblasts had mostly catabolic effects on cell metabolism and osteogenic differentiation irrespective of donor pathology and reflect the impact of tissue microenvironment on cell metabolism. These catabolic effects are important for understanding differences in effects of EVs on target tissues/cells when harnessing them as therapeutic drugs.

19.
Sci Rep ; 8(1): 9199, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29907830

RESUMO

Clinical observations suggest neuronal control of bone remodeling. Sensory nerve fibers innervating bone, bone marrow and periosteum signal via neurotransmitters including substance P (SP). In previous studies we observed impaired biomechanical and structural bone parameters in tachykinin (Tac) 1-deficient mice lacking SP. Here, we aim to specify effects of SP on metabolic parameters of bone marrow macrophage (BMM)/osteoclast cultures and osteoblasts isolated from Tac1-deficient and wildtype (WT) mice. We demonstrated endogenous SP production and secretion in WT bone cells. Absence of SP reduced bone resorption rate, as we found reduced numbers of precursor cells (BMM) and multinucleated osteoclasts and measured reduced cathepsin K activity in Tac1-/- BMM/osteoclast cultures. However, this might partly be compensated by reduced apoptosis rate and increased fusion potential of Tac1-/- precursor cells to enlarged "super" osteoclasts. Contrarily, increased ALP enzyme activity and apoptosis rate during early osteoblast differentiation accelerated osteogenesis and cell death in the absence of SP together with reduced ALP activity of Tac1-/- osteoblasts during late osteogenic differentiation resulting in reduced bone formation at later stages. Therefore, we suggest that absence of SP presumably results in a slight reduction of bone resorption rate but concomitantly in a critical reduction of bone formation and mineralization rate.


Assuntos
Apoptose , Remodelação Óssea , Diferenciação Celular , Osteoblastos/metabolismo , Osteogênese , Substância P/metabolismo , Animais , Células Cultivadas , Camundongos , Camundongos Mutantes , Osteoblastos/citologia , Osteoclastos/citologia , Substância P/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa