Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nat Methods ; 18(4): 382-388, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33782607

RESUMO

The coarse-grained Martini force field is widely used in biomolecular simulations. Here we present the refined model, Martini 3 ( http://cgmartini.nl ), with an improved interaction balance, new bead types and expanded ability to include specific interactions representing, for example, hydrogen bonding and electronic polarizability. The updated model allows more accurate predictions of molecular packing and interactions in general, which is exemplified with a vast and diverse set of applications, ranging from oil/water partitioning and miscibility data to complex molecular systems, involving protein-protein and protein-lipid interactions and material science applications as ionic liquids and aedamers.


Assuntos
Simulação de Dinâmica Molecular , Ligação de Hidrogênio , Bicamadas Lipídicas , Termodinâmica
2.
PLoS Pathog ; 18(2): e1010306, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35130333

RESUMO

The Pseudomonas aeruginosa toxin ExoS, secreted by the type III secretion system (T3SS), supports intracellular persistence via its ADP-ribosyltransferase (ADPr) activity. For epithelial cells, this involves inhibiting vacuole acidification, promoting vacuolar escape, countering autophagy, and niche construction in the cytoplasm and within plasma membrane blebs. Paradoxically, ExoS and other P. aeruginosa T3SS effectors can also have antiphagocytic and cytotoxic activities. Here, we sought to reconcile these apparently contradictory activities of ExoS by studying the relationships between intracellular persistence and host epithelial cell death. Methods involved quantitative imaging and the use of antibiotics that vary in host cell membrane permeability to selectively kill intracellular and extracellular populations after invasion. Results showed that intracellular P. aeruginosa mutants lacking T3SS effector toxins could kill (permeabilize) cells when extracellular bacteria were eliminated. Surprisingly, wild-type strain PAO1 (encoding ExoS, ExoT and ExoY) caused cell death more slowly, the time extended from 5.2 to 9.5 h for corneal epithelial cells and from 10.2 to 13.0 h for HeLa cells. Use of specific mutants/complementation and controls for initial invasion showed that ExoS ADPr activity delayed cell death. Triggering T3SS expression only after bacteria invaded cells using rhamnose-induction in T3SS mutants rescued the ExoS-dependent intracellular phenotype, showing that injected effectors from extracellular bacteria were not required. The ADPr activity of ExoS was further found to support internalization by countering the antiphagocytic activity of both the ExoS and ExoT RhoGAP domains. Together, these results show two additional roles for ExoS ADPr activity in supporting the intracellular lifestyle of P. aeruginosa; suppression of host cell death to preserve a replicative niche and inhibition of T3SS effector antiphagocytic activities to allow invasion. These findings add to the growing body of evidence that ExoS-encoding (invasive) P. aeruginosa strains can be facultative intracellular pathogens, and that intracellularly secreted T3SS effectors contribute to pathogenesis.


Assuntos
ADP Ribose Transferases/metabolismo , Permeabilidade da Membrana Celular , Exotoxinas/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Morte Celular , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Proteínas Ativadoras de GTPase/metabolismo , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Mutação , Pseudomonas aeruginosa/efeitos dos fármacos , Sistemas de Secreção Tipo III/metabolismo , Vacúolos/metabolismo
3.
J Chem Inf Model ; 63(3): 702-710, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36656159

RESUMO

The MArtini Database (MAD - https://mad.ibcp.fr) is a web server designed for the sharing of structures and topologies of molecules parametrized with the Martini coarse-grained (CG) force field. MAD can also convert atomistic structures into CG structures and prepare complex systems (including proteins, lipids, etc.) for molecular dynamics (MD) simulations at the CG level. It is dedicated to the generation of input files for Martini 3, the most recent version of this popular CG force field. Specifically, the MAD server currently includes tools to submit or retrieve CG models of a wide range of molecules (lipids, carbohydrates, nanoparticles, etc.), transform atomistic protein structures into CG structures and topologies, with fine control on the process and assemble biomolecules into large systems, and deliver all files necessary to start simulations in the GROMACS MD engine.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Termodinâmica , Proteínas/química , Computadores , Lipídeos
4.
FASEB J ; 35(10): e21899, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34569661

RESUMO

The cornea of the eye differs from other mucosal surfaces in that it lacks a viable bacterial microbiome and by its unusually high density of sensory nerve endings. Here, we explored the role of corneal nerves in preventing bacterial adhesion. Pharmacological and genetic methods were used to inhibit the function of corneal sensory nerves or their associated transient receptor potential cation channels TRPA1 and TRPV1. Impacts on bacterial adhesion, resident immune cells, and epithelial integrity were examined using fluorescent labeling and quantitative confocal imaging. TRPA1/TRPV1 double gene-knockout mice were more susceptible to adhesion of environmental bacteria and to that of deliberately-inoculated Pseudomonas aeruginosa. Supporting the involvement of TRPA1/TRPV1-expressing corneal nerves, P. aeruginosa adhesion was also promoted by treatment with bupivacaine, or ablation of TRPA1/TRPV1-expressing nerves using RTX. Moreover, TRPA1/TRPV1-dependent defense was abolished by enucleation which severs corneal nerves. High-resolution imaging showed normal corneal ultrastructure and surface-labeling by wheat-germ agglutinin for TRPA1/TRPV1 knockout murine corneas, and intact barrier function by absence of fluorescein staining. P. aeruginosa adhering to corneas after perturbation of nerve or TRPA1/TRPV1 function failed to penetrate the surface. Single gene-knockout mice showed roles for both TRPA1 and TRPV1, with TRPA1-/- more susceptible to P. aeruginosa adhesion while TRPV1-/- corneas instead accumulated environmental bacteria. Corneal CD45+/CD11c+ cell responses to P. aeruginosa challenge, previously shown to counter bacterial adhesion, also depended on TRPA1/TRPV1 and sensory nerves. Together, these results demonstrate roles for corneal nerves and TRPA1/TRPV1 in corneal resistance to bacterial adhesion in vivo and suggest that the mechanisms involve resident immune cell populations.


Assuntos
Aderência Bacteriana , Córnea , Pseudomonas aeruginosa/metabolismo , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Córnea/inervação , Córnea/metabolismo , Córnea/microbiologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Canal de Cátion TRPA1/genética , Canais de Cátion TRPV/genética
5.
J Bacteriol ; 202(1)2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31611290

RESUMO

In Escherichia coli and Salmonella, the c-di-GMP effector YcgR inhibits flagellar motility by interacting directly with the motor to alter both its bias and speed. Here, we demonstrate that in both of these bacteria, YcgR acts sequentially, altering motor bias first and then decreasing motor speed. We show that when c-di-GMP levels are high, deletion of ycgR restores wild-type motor behavior in E. coli, indicating that YcgR is the only motor effector in this bacterium. Yet, motility and chemotaxis in soft agar do not return to normal, suggesting that there is a second mechanism that inhibits motility under these conditions. In Salmonella, c-di-GMP-induced synthesis of extracellular cellulose has been reported to entrap flagella and to be responsible for the YcgR-independent motility defect. We found that this is not the case in E. coli Instead, we found through reversion analysis that deletion of rssB, which codes for a response regulator/adaptor protein that normally directs ClpXP protease to target σS for degradation, restored wild-type motility in the ycgR mutant. Our data suggest that high c-di-GMP levels may promote altered interactions between these proteins to downregulate flagellar gene expression.IMPORTANCE Flagellum-driven motility has been studied in E. coli and Salmonella for nearly half a century. Over 60 genes control flagellar assembly and function. The expression of these genes is regulated at multiple levels in response to a variety of environmental signals. Cues that elevate c-di-GMP levels, however, inhibit motility by direct binding of the effector YcgR to the flagellar motor. In this study conducted mainly in E. coli, we show that YcgR is the only effector of motor control and tease out the order of YcgR-mediated events. In addition, we find that the σS regulator protein RssB contributes to negative regulation of flagellar gene expression when c-di-GMP levels are elevated.


Assuntos
GMP Cíclico/análogos & derivados , Proteínas de Ligação a DNA/fisiologia , Proteínas de Escherichia coli/fisiologia , Escherichia coli/genética , Flagelos/fisiologia , Regulon/fisiologia , Fatores de Transcrição/fisiologia , GMP Cíclico/fisiologia , Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica
6.
Artigo em Inglês | MEDLINE | ID: mdl-31451507

RESUMO

New drugs with novel mechanisms of resistance are desperately needed to address both community and nosocomial infections due to Gram-negative bacteria. One such potential target is LpxC, an essential enzyme that catalyzes the first committed step of lipid A biosynthesis. Achaogen conducted an extensive research campaign to discover novel LpxC inhibitors with activity against Pseudomonas aeruginosa We report here the in vitro antibacterial activity and pharmacodynamics of ACHN-975, the only molecule from these efforts and the first ever LpxC inhibitor to be evaluated in phase 1 clinical trials. In addition, we describe the profiles of three additional LpxC inhibitors that were identified as potential lead molecules. These efforts did not produce an additional development candidate with a sufficiently large therapeutic window and the program was subsequently terminated.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Catálise/efeitos dos fármacos , Humanos , Pseudomonas aeruginosa/metabolismo
7.
Mol Cell ; 38(1): 128-39, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20346719

RESUMO

We describe a mechanism of flagellar motor control by the bacterial signaling molecule c-di-GMP, which regulates several cellular behaviors. E. coli and Salmonella have multiple c-di-GMP cyclases and phosphodiesterases, yet absence of a specific phosphodiesterase YhjH impairs motility in both bacteria. yhjH mutants have elevated c-di-GMP levels and require YcgR, a c-di-GMP-binding protein, for motility inhibition. We demonstrate that YcgR interacts with the flagellar switch-complex proteins FliG and FliM, most strongly in the presence of c-di-GMP. This interaction reduces the efficiency of torque generation and induces CCW motor bias. We present a "backstop brake" model showing how both effects can result from disrupting the organization of the FliG C-terminal domain, which interacts with the stator protein MotA to generate torque. Inhibition of motility and chemotaxis may represent a strategy to prepare for sedentary existence by disfavoring migration away from a substrate on which a biofilm is to be formed.


Assuntos
Quimiotaxia/fisiologia , Proteínas de Escherichia coli/metabolismo , Flagelos/metabolismo , Proteínas Motores Moleculares/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Escherichia coli/citologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Modelos Moleculares , Proteínas Motores Moleculares/genética , Mutação Puntual , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Torque
8.
bioRxiv ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-36824932

RESUMO

Pathogenesis of Pseudomonas aeruginosa infections can include bacterial survival inside epithelial cells. Previously, we showed this involves multiple roles played by the type three-secretion system (T3SS), and specifically the effector ExoS. This includes ExoS-dependent inhibition of a lytic host cell response that subsequently enables intracellular replication. Here, we studied the underlying cell death response to intracellular P. aeruginosa, comparing wild-type to T3SS mutants varying in capacity to induce cell death and that localize to different intracellular compartments. Results showed that corneal epithelial cell death induced by intracellular P. aeruginosa lacking the T3SS, which remains in vacuoles, correlated with activation of NF-κB as measured by p65 relocalization and TNFα transcription and secretion. Deletion of caspase-4 through CRISPR-Cas9 mutagenesis delayed cell death caused by these intracellular T3SS mutants. Caspase-4 deletion also countered more rapid cell death caused by T3SS effector-null mutants still expressing the TSSS apparatus that traffic to the host cell cytoplasm, and in doing so rescued intracellular replication normally dependent on ExoS. While HeLa cells lacked a lytic death response to T3SS mutants, it was found to be enabled by interferon gamma treatment. Together, these results show that epithelial cells can activate the noncanonical inflammasome pathway to limit proliferation of intracellular P. aeruginosa, not fully dependent on bacterially-driven vacuole escape. Since ExoS inhibits the lytic response, the data implicate targeting of caspase-4, an intracellular pattern recognition receptor, as another contributor to the role of ExoS in the intracellular lifestyle of P. aeruginosa.

9.
mSphere ; 8(5): e0035123, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37589460

RESUMO

Pathogenesis of Pseudomonas aeruginosa infections can include bacterial survival inside epithelial cells. Previously, we showed that this involves multiple roles played by the type three secretion system (T3SS), and specifically the effector ExoS. This includes ExoS-dependent inhibition of a lytic host cell response that subsequently enables intracellular replication. Here, we studied the underlying cell death response to intracellular P. aeruginosa, comparing wild-type to T3SS mutants varying in capacity to induce cell death and that localize to different intracellular compartments. Results showed that corneal epithelial cell death induced by intracellular P. aeruginosa lacking the T3SS, which remains in vacuoles, correlated with the activation of nuclear factor-κB as measured by p65 relocalization and tumor necrosis factor alpha transcription and secretion. Deletion of caspase-4 through CRISPR-Cas9 mutagenesis delayed cell death caused by these intracellular T3SS mutants. Caspase-4 deletion also countered more rapid cell death caused by T3SS effector-null mutants still expressing the T3SS apparatus that traffic to the host cell cytoplasm, and in doing so rescued intracellular replication normally dependent on ExoS. While HeLa cells lacked a lytic death response to T3SS mutants, it was found to be enabled by interferon gamma treatment. Together, these results show that epithelial cells can activate the noncanonical inflammasome pathway to limit proliferation of intracellular P. aeruginosa, not fully dependent on bacterially driven vacuole escape. Since ExoS inhibits the lytic response, the data implicate targeting of caspase-4, an intracellular pattern recognition receptor, as another contributor to the role of ExoS in the intracellular lifestyle of P. aeruginosa. IMPORTANCE Pseudomonas aeruginosa can exhibit an intracellular lifestyle within epithelial cells in vivo and in vitro. The type three secretion system (T3SS) effector ExoS contributes via multiple mechanisms, including extending the life of invaded host cells. Here, we aimed to understand the underlying cell death inhibited by ExoS when P. aeruginosa is intracellular. Results showed that intracellular P. aeruginosa lacking T3SS effectors could elicit rapid cell lysis via the noncanonical inflammasome pathway. Caspase-4 contributed to cell lysis even when the intracellular bacteria lacked the entire T33S and were consequently unable to escape vacuoles, representing a naturally occurring subpopulation during wild-type infection. Together, the data show the caspase-4 inflammasome as an epithelial cell defense against intracellular P. aeruginosa, and implicate its targeting as another mechanism by which ExoS preserves the host cell replicative niche.


Assuntos
Inflamassomos , Pseudomonas aeruginosa , Humanos , Células HeLa , Pseudomonas aeruginosa/fisiologia , Inflamassomos/metabolismo , Células Epiteliais/microbiologia , Vacúolos/microbiologia
10.
mBio ; 13(6): e0274222, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36374039

RESUMO

Within epithelial cells, Pseudomonas aeruginosa depends on its type III secretion system (T3SS) to escape vacuoles and replicate rapidly in the cytosol. Previously, it was assumed that intracellular subpopulations remaining T3SS-negative (and therefore in vacuoles) were destined for degradation in lysosomes, supported by data showing vacuole acidification. Here, we report in both corneal and bronchial human epithelial cells that vacuole-associated bacteria can persist, sometimes in the same cells as cytosolic bacteria. Using a combination of phase-contrast, confocal, and correlative light-electron microscopy (CLEM), we also found they can demonstrate biofilm-associated markers: cdrA and cyclic-di-GMP (c-di-GMP). Vacuolar-associated bacteria, but not their cytosolic counterparts, tolerated the cell-permeable antibiotic ofloxacin. Surprisingly, use of mutants showed that both persistence in vacuoles and ofloxacin tolerance were independent of the biofilm-associated protein CdrA or exopolysaccharides (Psl, Pel, alginate). A T3SS mutant (ΔexsA) unable to escape vacuoles phenocopied vacuole-associated subpopulations in wild-type PAO1-infected cells, with results revealing that epithelial cell death depended upon bacterial viability. Intravital confocal imaging of infected mouse corneas confirmed that P. aeruginosa formed similar intracellular subpopulations within epithelial cells in vivo. Together, these results show that P. aeruginosa differs from other pathogens by diversifying intracellularly into vacuolar and cytosolic subpopulations that both contribute to pathogenesis. Their different gene expression and behavior (e.g., rapid replication versus slow replication/persistence) suggest cooperation favoring both short- and long-term interests and another potential pathway to treatment failure. How this intracellular diversification relates to previously described "acute versus chronic" virulence gene-expression phenotypes of P. aeruginosa remains to be determined. IMPORTANCE Pseudomonas aeruginosa can cause sight- and life-threatening opportunistic infections, and its evolving antibiotic resistance is a growing concern. Most P. aeruginosa strains can invade host cells, presenting a challenge to therapies that do not penetrate host cell membranes. Previously, we showed that the P. aeruginosa type III secretion system (T3SS) plays a pivotal role in survival within epithelial cells, allowing escape from vacuoles, rapid replication in the cytoplasm, and suppression of host cell death. Here, we report the discovery of a novel T3SS-negative subpopulation of intracellular P. aeruginosa within epithelial cells that persist in vacuoles rather than the cytoplasm and that tolerate a cell-permeable antibiotic (ofloxacin) that is able to kill cytosolic bacteria. Classical biofilm-associated markers, although demonstrated by this subpopulation, are not required for vacuolar persistence or antibiotic tolerance. These findings advance our understanding of how P. aeruginosa hijacks host cells, showing that it diversifies into multiple populations with T3SS-negative members enabling persistence while rapid replication is accomplished by more vulnerable T3SS-positive siblings. Intracellular P. aeruginosa persisting and tolerating antibiotics independently of the T3SS or biofilm-associated factors could present additional challenges to development of more effective therapeutics.


Assuntos
Proteínas de Bactérias , Pseudomonas aeruginosa , Animais , Camundongos , Humanos , Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/genética , Sistemas de Secreção Tipo III/metabolismo , Bactérias/metabolismo , Ofloxacino/metabolismo , Antibacterianos/metabolismo , Regulação Bacteriana da Expressão Gênica
11.
Ocul Surf ; 22: 94-102, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34332149

RESUMO

PURPOSE: Previously, we showed that tear fluid protects corneal epithelial cells against Pseudomonas aeruginosa without suppressing bacterial viability. Here, we studied how tear fluid affects bacterial gene expression. METHODS: RNA-sequencing was used to study the P. aeruginosa transcriptome after tear fluid exposure (5 h, 37 oC). Outcomes were further investigated by biochemical and physiological perturbations to tear fluid and tear-like fluid (TLF) and assessment of bacterial viability following tear/TLF pretreatment and antibiotic exposure. RESULTS: Tear fluid deregulated ~180 P. aeruginosa genes ≥8 fold versus PBS including downregulating lasI, rhlI, qscR (quorum sensing/virulence), oprH, phoP, phoQ (antimicrobial resistance) and arnBCADTEF (polymyxin B resistance). Upregulated genes included algF (biofilm formation) and hemO (iron acquisition). qPCR confirmed tear down-regulation of oprH, phoP and phoQ. Tear fluid pre-treatment increased P. aeruginosa resistance to meropenem ~5-fold (4 µg/ml), but enhanced polymyxin B susceptibility ~180-fold (1 µg/ml), the latter activity reduced by dilution in PBS. Media containing a subset of tear components (TLF) also sensitized bacteria to polymyxin B, but only ~22.5-fold, correlating with TLF/tear fluid Ca2+ and Mg2+ concentrations. Accordingly, phoQ mutants were not sensitized by TLF or tear fluid. Superior activity of tear fluid versus TLF against wild-type P. aeruginosa was heat resistant but proteinase K sensitive. CONCLUSION: P. aeruginosa responds to human tear fluid by upregulating genes associated with bacterial survival and adaptation. Meanwhile, tear fluid down-regulates multiple virulence-associated genes. Tears also utilize divalent cations and heat resistant/proteinase K sensitive component(s) to enhance P. aeruginosa sensitivity to polymyxin B.


Assuntos
Pseudomonas aeruginosa , Transcriptoma , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Pseudomonas aeruginosa/genética
12.
Nat Commun ; 11(1): 3944, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32769983

RESUMO

Triacylglycerols (TG) are synthesized at the endoplasmic reticulum (ER) bilayer and packaged into organelles called lipid droplets (LDs). LDs are covered by a single phospholipid monolayer contiguous with the ER bilayer. This connection is used by several monotopic integral membrane proteins, with hydrophobic membrane association domains (HDs), to diffuse between the organelles. However, how proteins partition between ER and LDs is not understood. Here, we employed synthetic model systems and found that HD-containing proteins strongly prefer monolayers and returning to the bilayer is unfavorable. This preference for monolayers is due to a higher affinity of HDs for TG over membrane phospholipids. Protein distribution is regulated by PC/PE ratio via alterations in monolayer packing and HD-TG interaction. Thus, HD-containing proteins appear to non-specifically accumulate to the LD surface. In cells, protein editing mechanisms at the ER membrane would be necessary to prevent unspecific relocation of HD-containing proteins to LDs.


Assuntos
Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Triglicerídeos/metabolismo , Dicroísmo Circular , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/química , Simulação de Dinâmica Molecular , Domínios Proteicos , Transporte Proteico , Triglicerídeos/química
13.
Prog Retin Eye Res ; 76: 100804, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31756497

RESUMO

Contact lenses represent a widely utilized form of vision correction with more than 140 million wearers worldwide. Although generally well-tolerated, contact lenses can cause corneal infection (microbial keratitis), with an approximate annualized incidence ranging from ~2 to ~20 cases per 10,000 wearers, and sometimes resulting in permanent vision loss. Research suggests that the pathogenesis of contact lens-associated microbial keratitis is complex and multifactorial, likely requiring multiple conspiring factors that compromise the intrinsic resistance of a healthy cornea to infection. Here, we outline our perspective of the mechanisms by which contact lens wear sometimes renders the cornea susceptible to infection, focusing primarily on our own research efforts during the past three decades. This has included studies of host factors underlying the constitutive barrier function of the healthy cornea, its response to bacterial challenge when intrinsic resistance is not compromised, pathogen virulence mechanisms, and the effects of contact lens wear that alter the outcome of host-microbe interactions. For almost all of this work, we have utilized the bacterium Pseudomonas aeruginosa because it is the leading cause of lens-related microbial keratitis. While not yet common among corneal isolates, clinical isolates of P. aeruginosa have emerged that are resistant to virtually all currently available antibiotics, leading the United States CDC (Centers for Disease Control) to add P. aeruginosa to its list of most serious threats. Compounding this concern, the development of advanced contact lenses for biosensing and augmented reality, together with the escalating incidence of myopia, could portent an epidemic of vision-threatening corneal infections in the future. Thankfully, technological advances in genomics, proteomics, metabolomics and imaging combined with emerging models of contact lens-associated P. aeruginosa infection hold promise for solving the problem - and possibly life-threatening infections impacting other tissues.


Assuntos
Antibacterianos/uso terapêutico , Bactérias/isolamento & purificação , Lentes de Contato/microbiologia , Córnea/microbiologia , Infecções Oculares Bacterianas/etiologia , Ceratite/etiologia , Infecções Relacionadas à Prótese/microbiologia , Infecções Oculares Bacterianas/tratamento farmacológico , Infecções Oculares Bacterianas/microbiologia , Humanos , Ceratite/tratamento farmacológico , Ceratite/microbiologia , Infecções Relacionadas à Prótese/diagnóstico
14.
mBio ; 10(4)2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31431558

RESUMO

Pseudomonas aeruginosa is among bacterial pathogens capable of twitching motility, a form of surface-associated movement dependent on type IV pili (T4P). Previously, we showed that T4P and twitching were required for P. aeruginosa to cause disease in a murine model of corneal infection, to traverse human corneal epithelial multilayers, and to efficiently exit invaded epithelial cells. Here, we used live wide-field fluorescent imaging combined with quantitative image analysis to explore how twitching contributes to epithelial cell egress. Results using time-lapse imaging of cells infected with wild-type PAO1 showed that cytoplasmic bacteria slowly disseminated throughout the cytosol at a median speed of >0.05 µm s-1 while dividing intracellularly. Similar results were obtained with flagellin (fliC) and flagellum assembly (flhA) mutants, thereby excluding swimming, swarming, and sliding as mechanisms. In contrast, pilA mutants (lacking T4P) and pilT mutants (twitching motility defective) appeared stationary and accumulated in expanding aggregates during intracellular division. Transmission electron microscopy confirmed that these mutants were not trapped within membrane-bound cytosolic compartments. For the wild type, dissemination in the cytosol was not prevented by the depolymerization of actin filaments using latrunculin A and/or the disruption of microtubules using nocodazole. Together, these findings illustrate a novel form of intracellular bacterial motility differing from previously described mechanisms in being directly driven by bacterial motility appendages (T4P) and not depending on polymerized host actin or microtubules.IMPORTANCE Host cell invasion can contribute to disease pathogenesis by the opportunistic pathogen Pseudomonas aeruginosa Previously, we showed that the type III secretion system (T3SS) of invasive P. aeruginosa strains modulates cell entry and subsequent escape from vacuolar trafficking to host lysosomes. However, we also showed that mutants lacking either type IV pili (T4P) or T4P-dependent twitching motility (i) were defective in traversing cell multilayers, (ii) caused less pathology in vivo, and (iii) had a reduced capacity to exit invaded cells. Here, we report that after vacuolar escape, intracellular P. aeruginosa can use T4P-dependent twitching motility to disseminate throughout the host cell cytoplasm. We further show that this strategy for intracellular dissemination does not depend on flagellin and resists both host actin and host microtubule disruption. This differs from mechanisms used by previously studied pathogens that utilize either host actin or microtubules for intracellular dissemination independently of microbe motility appendages.


Assuntos
Bactérias/metabolismo , Células Epiteliais/microbiologia , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/metabolismo , Epitélio Corneano , Flagelina/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Sistemas de Secreção Tipo III
15.
ChemMedChem ; 14(16): 1560-1572, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31283109

RESUMO

UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is a Zn2+ deacetylase that is essential for the survival of most pathogenic Gram-negative bacteria. ACHN-975 (N-((S)-3-amino-1-(hydroxyamino)-3-methyl-1-oxobutan-2-yl)-4-(((1R,2R)-2-(hydroxymethyl)cyclopropyl)buta-1,3-diyn-1-yl)benzamide) was the first LpxC inhibitor to reach human clinical testing and was discovered to have a dose-limiting cardiovascular toxicity of transient hypotension without compensatory tachycardia. Herein we report the effort beyond ACHN-975 to discover LpxC inhibitors optimized for enzyme potency, antibacterial activity, pharmacokinetics, and cardiovascular safety. Based on its overall profile, compound 26 (LPXC-516, (S)-N-(2-(hydroxyamino)-1-(3-methoxy-1,1-dioxidothietan-3-yl)-2-oxoethyl)-4-(6-hydroxyhexa-1,3-diyn-1-yl)benzamide) was chosen for further development. A phosphate prodrug of 26 was developed that provided a solubility of >30 mg mL-1 for parenteral administration and conversion into the active drug with a t1/2 of approximately two minutes. Unexpectedly, and despite our optimization efforts, the prodrug of 26 still possesses a therapeutic window insufficient to support further clinical development.


Assuntos
Amidoidrolases/antagonistas & inibidores , Antibacterianos/farmacologia , Di-Inos/farmacologia , Inibidores Enzimáticos/farmacologia , Coração/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/farmacocinética , Antibacterianos/toxicidade , Proteínas de Bactérias/antagonistas & inibidores , Cardiotoxicidade , Di-Inos/síntese química , Di-Inos/farmacocinética , Di-Inos/toxicidade , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/toxicidade , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/farmacocinética , Ácidos Hidroxâmicos/toxicidade , Masculino , Estrutura Molecular , Pró-Fármacos/síntese química , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Pró-Fármacos/toxicidade , Pseudomonas aeruginosa/efeitos dos fármacos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
16.
mBio ; 6(2): e02367, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25714720

RESUMO

UNLABELLED: The bacterial flagellum is driven by a bidirectional rotary motor, which propels bacteria to swim through liquids or swarm over surfaces. While the functions of the major structural and regulatory components of the flagellum are known, the function of the well-conserved FliL protein is not. In Salmonella and Escherichia coli, the absence of FliL leads to a small defect in swimming but complete elimination of swarming. Here, we tracked single motors of these bacteria and found that absence of FliL decreases their speed as well as switching frequency. We demonstrate that FliL interacts strongly with itself, with the MS ring protein FliF, and with the stator proteins MotA and MotB and weakly with the rotor switch protein FliG. These and other experiments show that FliL increases motor output either by recruiting or stabilizing the stators or by increasing their efficiency and contributes additionally to torque generation at higher motor loads. The increased torque enabled by FliL explains why this protein is essential for swarming on an agar surface expected to offer increased resistance to bacterial movement. IMPORTANCE: FliL is a well-conserved bacterial flagellar protein whose absence leads to a variety of motility defects, ranging from moderate to complete inhibition of swimming in some bacterial species, inhibition of swarming in others, structural defects that break the flagellar rod during swarming in E. coli and Salmonella, and failure to eject the flagellar filament during the developmental transition of a swimmer to a stalk cell in Caulobacter crescentus. Despite these many phenotypes, a specific function for FliL has remained elusive. Here, we established a central role for FliL at the Salmonella and E. coli motors, where it interacts with both rotor and stator proteins, increases motor output, and contributes to the normal rotational bias of the motor.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/fisiologia , Flagelos/fisiologia , Locomoção , Proteínas de Membrana/metabolismo , Salmonella/fisiologia , Escherichia coli/genética , Flagelos/genética , Proteínas de Membrana/deficiência , Ligação Proteica , Mapeamento de Interação de Proteínas , Salmonella/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa