Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Regul Toxicol Pharmacol ; 73(1): 196-200, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26160596

RESUMO

Raspberry ketone (4-(4-hydroxyphenyl)-2-butanone) is marketed on the Internet as a food supplement. The recommended intake is between 100 and 1400 mg per day. The substance is naturally occurring in raspberries (up to 4.3 mg/kg) and is used as a flavouring substance. Toxicological studies on raspberry ketone are limited to acute and subchronic studies in rats. When the lowest recommended daily dose of raspberry ketone (100 mg) as a food supplement is consumed, it is 56 times the established threshold of toxicological concern (TTC) of 1800 µg/day for Class 1 substances. The margin of safety (MOS) based on a NOAEL of 280 mg/kg bw/day for lower weight gain in rats is 165 at 100 mg and 12 at 1400 mg. The recommended doses are a concern taking into account the TTC and MOS. Investigations of raspberry ketone in quantitative structure-activity relationship (QSAR) models indicated potential cardiotoxic effects and potential effects on reproduction/development. Taking into account the high intake via supplements, the compound's toxic potential should be clarified with further experimental studies. In UK the pure compound is regarded as novel food requiring authorisation prior to marketing but raspberry ketone is not withdrawn from Internet sites from this country.


Assuntos
Butanonas/toxicidade , Suplementos Nutricionais/análise , Suplementos Nutricionais/toxicidade , Animais , Aromatizantes/toxicidade , Nível de Efeito Adverso não Observado , Relação Quantitativa Estrutura-Atividade , Ratos , Segurança
2.
Environ Toxicol Pharmacol ; 105: 104347, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38143042

RESUMO

Disruption of signalling mediated by the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is associated with risk of cancer, metabolic diseases, and endocrine disruption. The purpose of this study was to identify environmental chemicals acting as PPARγ antagonists. Data from the Tox21 PPARγ antagonism assay were replicated using a reporter system in HEK293 cells. Two quantitative structure-activity relationship (QSAR) models were developed, and five REACH-registered substances predicted positive were tested in vitro. Reporter assay results were consistent with Tox21 data since all conflicting results could be explained by assay interference. QSAR models showed good predictive performance, and follow-up experiments revealed two PPARγ antagonists out of three non-interfering chemicals. In conclusion, the developed QSAR models and follow-up experiments are important steps in the discovery of potential endocrine- and metabolism-disrupting chemicals.


Assuntos
Ensaios de Triagem em Larga Escala , Relação Quantitativa Estrutura-Atividade , Humanos , Ensaios de Triagem em Larga Escala/métodos , PPAR gama/genética , Células HEK293
3.
Front Toxicol ; 5: 1189303, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37265663

RESUMO

Current test strategies to identify thyroid hormone (TH) system disruptors are inadequate for conducting robust chemical risk assessment required for regulation. The tests rely heavily on histopathological changes in rodent thyroid glands or measuring changes in systemic TH levels, but they lack specific new approach methodologies (NAMs) that can adequately detect TH-mediated effects. Such alternative test methods are needed to infer a causal relationship between molecular initiating events and adverse outcomes such as perturbed brain development. Although some NAMs that are relevant for TH system disruption are available-and are currently in the process of regulatory validation-there is still a need to develop more extensive alternative test batteries to cover the range of potential key events along the causal pathway between initial chemical disruption and adverse outcomes in humans. This project, funded under the Partnership for the Assessment of Risk from Chemicals (PARC) initiative, aims to facilitate the development of NAMs that are specific for TH system disruption by characterizing in vivo mechanisms of action that can be targeted by in embryo/in vitro/in silico/in chemico testing strategies. We will develop and improve human-relevant in vitro test systems to capture effects on important areas of the TH system. Furthermore, we will elaborate on important species differences in TH system disruption by incorporating non-mammalian vertebrate test species alongside classical laboratory rat species and human-derived in vitro assays.

4.
Chemosphere ; 263: 127703, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32854002

RESUMO

Organophosphate ester flame retardants (OPFRs) are used to prevent ignition and spreading of fire. They are present in various human matrices suggesting adult, fetal, and neonate exposure. Endocrine related effects have been observed in vivo, but information at the molecular level is lacking for some OPFRs. Also, a better understanding of potential contribution from chemical substructures is needed. The aim of this study was to screen OPFRs for endocrine disruptive potential in vitro and in silico. We selected eleven substances to represent some OPFRs with 1) little information on endocrine activity and others to represent 2) varied chemical substructures. We used in vitro assays for androgen receptor (AR), aryl hydrocarbon receptor (AhR), and Nrf2 activity, effects on steroidogenesis, and transthyretin (TTR) binding, as well as in silico models covering estrogen, thyroid, and CYP3A4 induction related endpoints. Ten OPFRs affected AR and AhR activity, seven affected TTR binding, and five affected 17ß-estradiol levels. Several substances had IC50-values below 10 µM and exhibited efficacious effects. These included TPHP, CDP, TMPP, TIPPP, and EHDPP for AR antagonism, suggesting that the degree of arylation and the size of the substance can play a role for the activity. Chlorinated OPFRs had low/no effect on TTR binding. No clear trend was observed for AhR and steroidogenesis, but all arylated OPFRs were predicted to have alert for estrogen receptor binding in an in silico model with metabolism simulator included. Collectively, our data suggest that OPFRs have endocrine disruptive potential warranting further studies to enable human risk assessment.


Assuntos
Retardadores de Chama , Adulto , Simulação por Computador , Ésteres , Estrogênios , Retardadores de Chama/toxicidade , Humanos , Recém-Nascido , Organofosfatos/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa