Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 92(6): 4541-4547, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32067452

RESUMO

We report the independent role of isomerism of secondary sphere substituents over their nature, a factor often overlooked in molecular electrocatalysis pertaining to electrochemical sensing, by establishing that isomerism redefines the electronic structure at the catalytic reaction center via geometrical factors. UV-vis spectroscopy and X-ray photoelectron spectroscopy suggest that a substituent's isomerism in molecular catalysts conjoins molecular planarity and catalytic activation through competing field effects and resonance effects. As a classical example, we demonstrate the influence of isomerism of the -NO2 substituents for the electrocatalytic multi electron oxidation of As(III), a potentially important electrochemical pathway for water remediation and arsenic detection. The isomerism dependent oxidative activation of catalytic center leads to a nonprecious molecular catalyst capable for direct As(III) oxidation with an experimental detection limit close to WHO guidelines. This work opens up an unusual approach in analytical chemistry for developing various sensing platforms for challenging chemical and electrochemical reactions.


Assuntos
Arsênio/análise , Cobalto/química , Técnicas Eletroquímicas , Dióxido de Nitrogênio/química , Compostos Organometálicos/química , Catálise , Elétrons , Isomerismo , Estrutura Molecular , Oxirredução , Tamanho da Partícula , Técnicas de Microbalança de Cristal de Quartzo , Propriedades de Superfície
2.
Dalton Trans ; 53(32): 13384-13393, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39072534

RESUMO

The rising demand for portable energy conversion devices has spurred the advancement of direct liquid fuel cells (DLFCs) employing fuels such as alcohol, ammonia, hydrazine, and vitamin C. In these devices, various precious metal platforms have been explored to increase the de-electronation kinetics and reduce catalyst poisoning, but with substantial cost implications. We demonstrate the crucial role of ligands in non-precious organometallic complexes in influencing the de-electronation kinetics of fuel molecules through a unique substrate-ligand synergistic interaction. This unique chemistry imparts electron deficiency at the catalytic metal center while simultaneously populating the ligand with an extensive proton charge assembly. This distinct substrate-ligand interaction enhances the DLFC performance by coulombically dragging the substrate with a distinct amplification in its de-electronation kinetics. By integrating this approach with a ferricyanide/ferrocyanide half-cell reaction, a precious metal-free vitamin C fuel cell is developed, which is capable of generating an open circuit voltage of ∼950 mV, a peak power density of ∼97 mW cm-2 at a peak current density of ∼215 mA cm-2 with the performance metrics nearly 1.7 times higher than a precious metal based DLFC. This highlights the potential of the substrate-ligand synergy in the design of efficient molecular catalysts for energy conversion applications.

3.
Chem Sci ; 15(33): 13262-13270, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39183932

RESUMO

We demonstrate a switchable electrocatalysis mechanism modulated by hydrogen bonding interactions in ligand geometries. By manipulating these geometries, specific electrochemical processes at a single catalytic site can be selectively and precisely activated or deactivated. The α geometry enhances dioxygen electroreduction (ORR) while inhibiting protium redox processes, with the opposite effect seen in the ß geometry. Intramolecular hydrogen bonding in the α geometry boosts electron density at the catalytic center, facilitating a shift of ORR to a 4-electron pathway. Conversely, the ß geometry promotes a 2-electron ORR and facilitates electrocatalytic hydrogen evolution through an extensive proton charge assembly; offering a paradigm shift to conventional electrocatalytic principles. The expectations that ligand geometry induced electron density modulations in the catalytic metal centre would have a comparable impact on both ORR and HER has been questioned due to the contrasting reactivity exhibited by α-geometry and ß-geometry molecules. This further emphasizes the complex and intriguing nature of the roles played by ligands in molecular electrocatalysis.

4.
Chem Sci ; 15(5): 1726-1735, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38303938

RESUMO

Contrary to conventional beliefs, we show how a functional ligand that does not exhibit any redox activity elevates the charge storage capability of an electric double layer via a proton charge assembly. Compared to an unsubstituted ligand, a non-redox active carboxy ligand demonstrated nearly a 4-fold increase in charge storage, impressive capacitive retention even at a rate of 900C, and approximately a 2-fold decrease in leakage currents with an enhancement in energy density up to approximately 70% via a non-electrochemical route of proton charge assembly. Generalizability of these findings is presented with various non-redox active functional units that can undergo proton charge assembly in the ligand. This demonstration of non-redox active functional units enriching supercapacitive charge storage via proton charge assembly contributes to the rational design of ligands for energy storage applications.

5.
Chem Sci ; 14(23): 6383-6392, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37325136

RESUMO

The essence of any electrochemical system is engraved in its electrical double layer (EDL), and we report its unprecedented reorganization by the structural isomerism of molecules, with a direct consequence on their energy storage capability. Electrochemical and spectroscopic analyses in combination with computational and modelling studies demonstrate that an attractive field-effect due to the molecule's structural-isomerism, in contrast to a repulsive field-effect, spatially screens the ion-ion coulombic repulsions in the EDL and reconfigures the local density of anions. In a laboratory-level prototype supercapacitor, those with ß-structural isomerism exhibit nearly 6-times elevated energy storage compared to the state-of-the-art electrodes, by delivering ∼535 F g-1 at 1 A g-1 while maintaining high performance metrics even at a rate as high as 50 A g-1. The elucidation of the decisive role of structural isomerism in reconfiguring the electrified interface represents a major step forward in understanding the electrodics of molecular platforms.

6.
iScience ; 25(10): 105179, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36238901

RESUMO

We have investigated the role of ligand isomerism in modulating the mechanisms and kinetics associated with charge/discharge chemistry of an aqueous metal-air battery. The dominant electron-withdrawing inductive effect (-I effect) and the diminished electron-withdrawing resonance effect (-R effect) in the α-NO2 isomer noticeably diminishes the rate of oxygen reduction (ORR) and oxygen evolution reactions (OER) on the catalytic Co-center. In their ß-counterpart, the cumulative -I and -R effects noticeably enhance the OER and ORR kinetics on the same catalytic Co-center. Therefore, the regioisomerism of the -NO2 functionality amplifies the kinetics of ORR/OER without influencing their mechanistic pathways. When isomeric electrocatalysts are integrated to aid the charge chemistry of a Zn-air battery, the overpotential could be decreased by ∼250 mV with ß-NO2 isomer leading to a round-trip efficiency as high as 60%. This work contributes to the design of novel molecular platforms to target the overall round-trip efficiency of energy storage and conversion devices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa