Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Virol ; 96(9): e0037322, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35404081

RESUMO

M2 protein of influenza virus plays an important role in virus budding, including membrane scission and vRNP packaging. Three hydrophobic amino acids (91F, 92V, and 94I) at the intracellular domain of the M2 protein constitute a hydrophobic motif, also known as the LC3-interacting region (LIR), whereas the role of this motif remains largely unclear. To explore the role of the 91-94 hydrophobic motif for influenza virus, all three hydrophobic amino acids were mutated to either hydrophilic S or hydrophobic A, resulting in two mutant viruses (WSN-M2/SSS and WSN-M2/AAA) in the background of WSN/H1N1. The results showed that the budding ability of the M2/SSS protein was inhibited and the bilayer membrane integrity of the WSN-M2/SSS virion was impaired based on transmission electron microscopy (TEM), which in turn abolished the resistance to trypsin treatment. Moreover, the mutant WSN-M2/SSS was dramatically attenuated in mice. In contrast, the AAA mutations did not have a significant effect on the budding of the M2 proteins or the bilayer membrane integrity of the viruses, and the mutant WSN-M2/AAA was still lethal to mice. In addition, although the 91-94 motif is an LIR, knocking out of the LC3 protein of A549 cells did not significantly affect the membrane integrity of the influenza viruses propagated on the LC3KO cells, which suggested that the 91-94 hydrophobic motif affected the viral membrane integrity and budding is independent of the LC3 protein. Overall, the hydrophobicity of the 91-94 motif is crucial for the budding of M2, bilayer membrane integrity, and pathogenicity of the influenza viruses. IMPORTANCE M2 plays a crucial role in the influenza virus life cycle. However, the function of the C-terminal intracellular domain of M2 protein remains largely unclear. In this study, we explored the function of the 91-94 hydrophobic motif of M2 protein. The results showed that the reduction of the hydrophobicity of the 91-94 motif significantly affected the budding ability of the M2 protein and impaired the bilayer membrane integrity of the mutant virus. The mouse study showed that the reduction of the hydrophobicity of the 91-94 motif significantly attenuated the mutant virus. All of the results indicated that the hydrophobicity of the 91-94 motif of the M2 protein plays an important role in budding, membrane integrity, and pathogenicity of influenza virus. Our study offers insights into the mechanism of influenza virus morphogenesis, particularly into the roles of the 91-94 hydrophobic motif of M2 in virion assembly and the pathogenicity of the influenza viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Proteínas da Matriz Viral , Proteínas Viroporinas , Liberação de Vírus , Aminoácidos/metabolismo , Animais , Interações Hidrofóbicas e Hidrofílicas , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/fisiologia , Camundongos , Proteínas da Matriz Viral/metabolismo , Proteínas Viroporinas/metabolismo
2.
J Nanobiotechnology ; 19(1): 366, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789291

RESUMO

Aß42 is one of the most extensively studied blood and Cerebrospinal fluid (CSF) biomarkers for the diagnosis of symptomatic and prodromal Alzheimer's disease (AD). Because of the heterogeneity and transient nature of Aß42 oligomers (Aß42Os), the development of technologies for dynamically detecting changes in the blood or CSF levels of Aß42 monomers (Aß42Ms) and Aß42Os is essential for the accurate diagnosis of AD. The currently commonly used Aß42 ELISA test kits usually mis-detected the elevated Aß42Os, leading to incomplete analysis and underestimation of soluble Aß42, resulting in a comprised performance in AD diagnosis. Herein, we developed a dual-target lateral flow immunoassay (dLFI) using anti-Aß42 monoclonal antibodies 1F12 and 2C6 for the rapid and point-of-care detection of Aß42Ms and Aß42Os in blood samples within 30 min for AD diagnosis. By naked eye observation, the visual detection limit of Aß42Ms or/and Aß42Os in dLFI was 154 pg/mL. The test results for dLFI were similar to those observed in the enzyme-linked immunosorbent assay (ELISA). Therefore, this paper-based dLFI provides a practical and rapid method for the on-site detection of two biomarkers in blood or CSF samples without the need for additional expertise or equipment.


Assuntos
Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/sangue , Biomarcadores/sangue , Imunoensaio , Fragmentos de Peptídeos/sangue , Testes Imediatos , Peptídeos beta-Amiloides/metabolismo , Animais , Anticorpos Monoclonais/metabolismo , Humanos , Imunoensaio/instrumentação , Imunoensaio/métodos , Limite de Detecção , Camundongos , Papel , Fragmentos de Peptídeos/metabolismo
3.
Pharmaceutics ; 16(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276521

RESUMO

Gene therapy displays great promise in the treatment of cervical cancer. The occurrence of cervical cancer is highly related to persistent human papilloma virus (HPV) infection. The HPV oncogene can be cleaved via gene editing technology to eliminate carcinogenic elements. However, the successful application of the gene therapy method depends on effective gene delivery into the vagina. To improve mucosal penetration and adhesion ability, quaternized chitosan was introduced into the poly(ß-amino ester) (PBAE) gene-delivery system in the form of quaternized chitosan-g-PBAE (QCP). At a mass ratio of PBAE:QCP of 2:1, the polymers exhibited the highest green fluorescent protein (GFP) transfection efficiency in HEK293T and ME180 cells, which was 1.1 and 5.4 times higher than that of PEI 25 kD. At this mass ratio, PBAE-QCP effectively compressed the GFP into spherical polyplex nanoparticles (PQ-GFP NPs) with a diameter of 255.5 nm. In vivo results indicated that owing to the mucopenetration and adhesion capability of quaternized CS, the GFP transfection efficiency of the PBAE-QCP hybrid system was considerably higher than those of PBAE and PEI 25 kD in the vaginal epithelial cells of Sprague-Dawley rats. Furthermore, the new system demonstrated low toxicity and good safety, laying an effective foundation for its further application in gene therapy.

4.
Vet Immunol Immunopathol ; 259: 110590, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36990004

RESUMO

Maternal-derived antibodies (MDAs) are one of reasons why vaccination with the H9N2 inactivated whole virus (IWV) vaccine failed in poultry. Unmethylated CpG motif-containing oligodeoxynucleotides (CpG ODN) shows great potential to overcome MDAs interference in mammals, but whether it has similar characteristics in poultry is still unknown. In the present study, different classes and various copies of CpG ODN motifs were cloned into two different plasmids (pCDNA3.1 or T vector). Immunomodulatory activities and immunoadjuvant efficacy of these CpG ODN plasmids were tested in vitro and in vivo in the presence of passively transferred antibodies (PTAs) that were used to mimic MDAs. Results showed that the T vector enriched with 30 copies of CpG-A ODN and 20 copies of CpG-B ODN (T-CpG-AB) significantly up-regulated mRNA expression of chicken-interferon-α (ch-IFN-α), chicken-interferon-ß (ch-IFN-ß) and chicken-interleukin-12 protein 40 (ch-IL-12p40). When administered as adjuvant of the H9N2 IWV vaccine, the minimal dose of T-CpG-AB plasmid was 30 µg per one-day-old chicken, which could induce strong humoral immune responses in the presence of PTAs. Furthermore, T-CpG-AB plasmid-based vaccine triggered both strong humoral immune responses and cytokines expression in the presence of PTAs in chickens. Overall, our findings suggest that T-CpG-AB plasmid can be an excellent adjuvant candidate for the H9N2 IWV vaccine to overcome MDAs interference in chickens.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Vacinas contra Influenza , Influenza Aviária , Animais , Galinhas , Anticorpos Antivirais , Adjuvantes Imunológicos , Plasmídeos/genética , Vacinas de Produtos Inativados , Interferon-alfa , Oligodesoxirribonucleotídeos , Mamíferos
5.
Front Microbiol ; 13: 1107975, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36777028

RESUMO

Although vaccines have been widely used for many years, they have failed to control H9N2 avian influenza virus (AIV) in the field in China. The high level of maternal-derived antibodies (MDAs) against H9N2 virus contributes to the H9N2 influenza vaccine failure in poultry. The study aimed to generate a new vaccine to overcome MDAs interference in H9N2 vaccination in chickens. We used turkey herpesvirus (HVT) as a vaccine vector to express H9 hemagglutinin (HA) proteins. The recombinant HVT expressing H9 HA proteins (rHVT-H9) was successfully generated and characterized in primary chicken embryonic fibroblasts (CEFs). Western blot and indirect immunofluorescence assay (IFA) showed that the rHVT-H9 consistently expressed HA proteins. In addition, the rHVT-H9 had similar growth kinetics to the parent HVT. Preliminary animal experiments showed that compared to the conventional inactivated whole virus (IWV) vaccine, the rHVT-H9 stimulated robust humoral immunity in chickens with passively transferred antibodies (PTAs) that were used to mimic MDAs. Transmission experiments showed that the rHVT-H9 induced both humoral and cellular immunity in chickens with PTAs. Furthermore, we used mathematical models to quantify the vaccine's efficacy in preventing the transmission of H9N2 AIV. The results showed that the rHVT-H9 reduced the virus shedding period and decreased the reproduction ratio (R) value in chickens with PTAs after homologous challenge. However, the vaccination in this trial did not yet bring R < 1. In summary, we generated a new rHVT-H9 vaccine, which stimulated strong humoral and cellular immunity, reducing virus shedding and transmission of H9N2 AIV even in the presence of PTAs in chickens.

6.
Front Mol Neurosci ; 14: 723317, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512259

RESUMO

Although amyloid-ß42 (Aß42) has been used as one of the core biomarkers for Alzheimer's disease (AD) diagnosis, the dynamic changes of its different forms in the brain, blood, and even intestines and its correlation with the progression of AD disease remain obscure. Herein, we screened Aß42-specific preferred antibody pairs 1F12/1F12 and 1F12/2C6 to accurately detect Aß42 types using sandwich ELISA, including total Aß42, Aß42 oligomers (Aß42Os), and Aß42 monomers (Aß42Ms). The levels of Aß42 species in the brain, blood, and intestines of different aged APP/PS1 mice were quantified to study their correlation with AD progression. Total Aß42 levels in the blood were not correlated with AD progression, but Aß42Ms level in the blood of 9-month-old APP/PS1 mice was significantly reduced, and Aß42Os level in the brain was significantly elevated compared to 3-month-old APP/PS1, demonstrating that the levels of Aß42Ms and Aß42Os in the blood and brain were correlated with AD progression. Interestingly, in 9-month-old APP/PS1 mice, the level of Aß42 in the intestine was higher than that in 3-month-old APP/PS1 mice, indicating that the increased level of Aß42 in the gastrointestinal organs may also be related to the progression of AD. Meanwhile, changes in the gut microbiota composition of APP/PS1 mice with age were also observed. Therefore, the increase in Aß derived from intestinal tissues and changes in microbiome composition can be used as a potential early diagnosis tool for AD, and further used as an indicator of drug intervention to reduce brain amyloid.

7.
Viruses ; 13(10)2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34696461

RESUMO

The influenza A virus (IAV) is an important cause of respiratory disease worldwide. It is well known that alveolar epithelial cells are the target cells for the IAV, but there is relatively limited knowledge regarding the role of macrophages during IAV infection. Here, we aimed to analyze transcriptome differences in mouse lungs and macrophage (RAW264.7) cell lines infected with either A/California/04/2009 H1N1 (CA09) or A/chicken/SD/56/2015 H9N2 (SD56) using deep sequencing. The uniquely differentially expressed genes (UDEGs) were analyzed with the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases; the results showed that the lungs infected with the two different viruses had different enrichments of pathways and terms. Interestingly, CA09 virus infection in mice was mostly involved with genes related to the extracellular matrix (ECM), while the most significant differences after SD56 infection in mice were in immune-related genes. Gene set enrichment analysis (GSEA) of RAW264.7 cells revealed that regulation of the cell cycle was of great significance after CA09 infection, whereas the regulation of the immune response was most enriched after SD56 infection, which was consistent with analysis results in the lung. Similar results were obtained from weighted gene co-expression network analysis (WGCNA), where cell cycle regulation was extensively activated in RAW264.7 macrophages infected with the CA09 virus. Disorder of the cell cycle is likely to affect their normal immune regulation, which may be an important factor leading to their different prognoses. These results provide insight into the mechanism of the CA09 virus that caused a pandemic and explain the different reactivities of monocytes/macrophages infected by H9N2 and H1N1 IAV subtypes.


Assuntos
Vírus da Influenza A/genética , Pulmão/virologia , Infecções por Orthomyxoviridae/virologia , RNA-Seq/métodos , Células Epiteliais Alveolares/virologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Cães , Células Epiteliais/virologia , Perfilação da Expressão Gênica , Ontologia Genética , Imunidade , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H9N2/genética , Macrófagos , Células Madin Darby de Rim Canino , Camundongos , Infecções por Orthomyxoviridae/imunologia , Prognóstico , Células RAW 264.7 , Transcriptoma , Virulência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa