Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2311317, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712469

RESUMO

The advent of 2D materials has ushered in the exploration of their synthesis, characterization and application. While plenty of 2D materials have been synthesized on various metallic substrates, interfacial interaction significantly affects their intrinsic electronic properties. Additionally, the complex transfer process presents further challenges. In this context, experimental efforts are devoted to the direct growth on technologically important semiconductor/insulator substrates. This review aims to uncover the effects of substrate on the growth of 2D materials. The focus is on non-metallic substrate used for epitaxial growth and how this highlights the necessity for phase engineering and advanced characterization at atomic scale. Special attention is paid to monoelemental 2D structures with topological properties. The conclusion is drawn through a discussion of the requirements for integrating 2D materials with current semiconductor-based technology and the unique properties of heterostructures based on 2D materials. Overall, this review describes how 2D materials can be fabricated directly on non-metallic substrates and the exploration of growth mechanism at atomic scale.

2.
Nano Lett ; 23(1): 148-154, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36566458

RESUMO

The power of surface chemistry to create atomically precise nanoarchitectures offers intriguing opportunities to advance the field of quantum technology. Strategies for building artificial electronic lattices by individually positioning atoms or molecules result in precisely tailored structures but lack structural robustness. Here, taking the advantage of strong bonding of Br atoms on noble metal surfaces, we report the production of stable quantum corrals by dehalogenation of hexabromobenzene molecules on a preheated Au(111) surface. The byproducts, Br adatoms, are confined within a new surface reconstruction pattern and aggregate into nanopores with an average size of 3.7 ± 0.1 nm, which create atomic orbital-like quantum resonance states inside each corral due to the interference of scattered electron waves. Remarkably, the atomic orbitals can be hybridized into molecular-like orbitals with distinct bonding and antibonding states. Our study opens up an avenue to fabricate quantum structures with high yield and superior robustness.

3.
Langmuir ; 36(26): 7706-7714, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32517475

RESUMO

Magnetorheological (MR) fluids have been successfully utilized in versatile fields but are still limited by their relatively inferior long-term dispersion stability. Herein, bio-inspired passion fruit-like Fe3O4@C nanospheres were fabricated via a simple hydrothermal and calcination approach to tackle the settling challenge. The unique structures provide sufficient active interfaces for the penetration of carrier mediums, leading to preferable wettability between particles and medium oils. Compared with the bare Fe3O4 nanoparticle suspension, the resulting Fe3O4@C nanosphere-based MR fluid exhibits desirable stability and relatively low field-off viscosity even at a high particle concentration up to 35 vol %.

4.
J Chem Phys ; 152(7): 074710, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32087652

RESUMO

Monolayer iron oxides grown on metal substrates have widely been used as model systems in heterogeneous catalysis. By means of ambient-pressure scanning tunneling microscopy (AP-STM), we studied the in situ oxidation and reduction of FeO(111) grown on Au(111) by oxygen (O2) and carbon monoxide (CO), respectively. Oxygen dislocation lines present on FeO islands are highly active for O2 dissociation. X-ray photoelectron spectroscopy measurements distinctly reveal the reversible oxidation and reduction of FeO islands after sequential exposure to O2 and CO. Our AP-STM results show that excess O atoms can be further incorporated on dislocation lines and react with CO, whereas the CO is not strong enough to reduce the FeO supported on Au(111) that is essential to retain the activity of oxygen dislocation lines.

5.
Small ; 15(22): e1805395, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30942946

RESUMO

The future electronic application of graphene highly relies on the production of large-area high-quality single-crystal graphene. However, the growth of single-crystal graphene on different substrates via either single nucleation or seamless stitching is carried out at a temperature of 1000 °C or higher. The usage of this high temperature generates a variety of problems, including complexity of operation, higher contamination, metal evaporation, and wrinkles owing to the mismatch of thermal expansion coefficients between the substrate and graphene. Here, a new approach for the fabrication of ultraflat single-crystal graphene using Cu/Ni (111)/sapphire wafers at lower temperature is reported. It is found that the temperature of epitaxial growth of graphene using Cu/Ni (111) can be reduced to 750 °C, much lower than that of earlier reports on catalytic surfaces. Devices made of graphene grown at 750 °C have a carrier mobility up to ≈9700 cm2 V-1 s-1 at room temperature. This work shines light on a way toward a much lower temperature growth of high-quality graphene in single crystallinity, which could benefit future electronic applications.

6.
Langmuir ; 35(9): 3507-3512, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30759989

RESUMO

Molecular devices have become an emergent branch of nanoscience and technology beyond traditional silicon-based electronic devices. The properties of these devices are intimately related to the molecular conformation and packing. In this article, three different conformations of melamine molecules are observed on Au(111), and a transition from the lying-down to standing-up phase with long-range order is realized in melamine chains with the assistance of hexabromobenzene (HBB). We argue that it is the expanding of HBB domains from hexagonal to the dimer phase due to surface dehalogenation that facilitates the dehydrogenation of melamine to form a standing-up conformation. Similar transitions are also accomplished on the Ag(111) surface. Our results provide an effective way to achieve standing-up molecular arrays with long-range order on relatively less active metals. This may have significant implications in fabricating organic thin film transistors.

7.
Langmuir ; 34(1): 553-560, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29268013

RESUMO

Construction of tunable and robust two-dimensional (2D) molecular arrays with desirable lattices and functionalities over a macroscopic scale relies on spontaneous and reversible noncovalent interactions between suitable molecules as building blocks. Halogen bonding, with active tunability of direction, strength, and length, is ideal for tailoring supramolecular structures. Herein, by combining low-temperature scanning tunneling microscopy and systematic first-principles calculations, we demonstrate novel halogen bonding involving single halogen atoms and phase engineering in 2D molecular self-assembly. On the Au(111) surface, we observed catalyzed dehalogenation of hexabromobenzene (HBB) molecules, during which negatively charged bromine adatoms (Brδ-) were generated and participated in assembly via unique C-Brδ+···Brδ- interaction, drastically different from HBB assembly on a chemically inert graphene substrate. We successfully mapped out different phases of the assembled superstructure, including densely packed hexagonal, tetragonal, dimer chain, and expanded hexagonal lattices at room temperature, 60 °C, 90 °C, and 110 °C, respectively, and the critical role of Brδ- in regulating lattice characteristics was highlighted. Our results show promise for manipulating the interplay between noncovalent interactions and catalytic reactions for future development of molecular nanoelectronics and 2D crystal engineering.

8.
Small ; 13(21)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28407459

RESUMO

All-inorganic perovskite CsPbX3 (X = Cl, Br, I) and related materials are promising candidates for potential solar cells, light emitting diodes, and photodetectors. Here, a novel architecture made of CsPbX3 /ZnS quantum dot heterodimers synthesized via a facile solution-phase process is reported. Microscopic measurements show that CsPbX3 /ZnS heterodimer has high crystalline quality with enhanced chemical stability, as also evidenced by systematic density functional theory based first-principles calculations. Remarkably, depending on the interface structure, ZnS induces either n-type or p-type doping in CsPbX3 and both type-I and type-II heterojunctions can be achieved, leading to rich electronic properties. Photoluminescence measurement results show a strong blue-shift and decrease of recombination lifetime with increasing sulfurization, which is beneficial for charge diffusion in solar cells and photovoltaic applications. These findings are expected to shed light on further understanding and design of novel perovskite heterostructures for stable, tunable optoelectronic devices.

9.
Nano Lett ; 16(5): 3160-5, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27101021

RESUMO

The unidirectional alignment of graphene islands is essential to the synthesis of wafer-scale single-crystal graphene on Ge(110) surface, but the underlying mechanism is not well-understood. Here we report that the necessary coalignment of the nucleating graphene islands on Ge(110) surface is caused by the presence of step-pattern; we show that on the preannealed Ge(110) textureless surface the graphene islands appear nonpreferentially orientated, while on the Ge(110) surfaces with natural step pattern, all graphene islands emerge coaligned. First-principles calculations and theoretical analysis reveal this different alignment behaviors originate from the strong chemical binding formed between the graphene island edges and the atomic steps on the Ge(110) surface, and the lattice matching at edge-step interface dictates the alignment of graphene islands with the armchair direction of graphene along the [-110] direction of the Ge(110) substrate.

10.
Small ; 12(15): 2009-13, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26915342

RESUMO

The synergic effects of Cu85Ni15 and the copper vapor evaporated from copper foil enabled the fast growth of a ≈300 µm bilayer graphene in ≈10 minutes. The copper vapor reduces the growth rate of the first graphene layer while the carbon dissolved in the alloy boosts the growth of the subsequently developed second graphene layer with an AB-stacking order.

11.
Small Methods ; : e2301512, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175841

RESUMO

Combinations of phosphorus with main group III, IV, and V elements are theoretically predicted to generate 2D binary phosphides with extraordinary properties and promising applications. However, experimental synthesis is significantly lacking. Here, a general approach for preparing 2D binary phosphides is reported using single crystalline surfaces containing the constituent element of target 2D materials as the substrate. To validate this, SnP3 and BiP, representing typical 2D binary phosphides, are successfully synthesized on Cu2 Sn and bismuthene, respectively. Scanning tunneling microscopy imaging reveals a hexagonal pattern of SnP3 on Cu2 Sn, while α-BiP can be epitaxially grown on the α-bismuthene domain on Cu2 Sb. First-principles calculations reveal that the formation of SnP3 on Cu2 Sn is associated with strong interface bonding and significant charge transfer, while α-BiP interacts weakly with α-bismuthene so that its semiconducting property is preserved. The study demonstrates an attractive avenue for the atomic-scale growth of binary 2D materials via substrate phase engineering.

12.
J Am Chem Soc ; 135(22): 8409-14, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23675983

RESUMO

Graphene growth on metal films via chemical vapor deposition (CVD) represents one of the most promising methods for graphene production. The realization of the wafer scale production of single crystalline graphene films requires an atomic scale understanding of the growth mechanism and the growth intermediates of CVD graphene on metal films. Here, we use in situ low-temperature scanning tunneling microscopy (LT-STM) to reveal the graphene growth intermediates at different stages via thermal decomposition of methane on Cu(111). We clearly demonstrate that various carbon clusters, including carbon dimers, carbon rectangles, and 'zigzag' and 'armchair'-like carbon chains, are the actual growth intermediates prior to the graphene formation. Upon the saturation of these carbon clusters, they can transform into defective graphene possessing pseudoperiodic corrugations and vacancies. These vacancy-defects can only be effectively healed in the presence of methane via high temperature annealing at 800 °C and result in the formation of vacancy-free monolayer graphene on Cu(111).

13.
J Am Chem Soc ; 135(24): 9050-4, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23701398

RESUMO

In this article, we demonstrated a method to synthesize graphene films at low temperature via a mild radical-coupling reaction. During the deposition process, with the effectively breaking of the C-Br bonds of hexabromobenzene (HBB) precursors, the generated HBB radicals couple efficiently to form graphene films at the low temperature of 220-250 °C. In situ low-temperature scanning tunneling microscopy was used to provide atomic scale investigation of the graphene growth mechanism using HBB as precursor. The chemical structure evolution during the graphene growth process was further corroborated by in situ X-ray photoelectron spectroscopy measurements. The charge carrier mobility of the graphene film grown at low temperature is at 1000-4200 cm(2) V(-1) s(-1), as evaluated in a field-effect transistor device configuration on SiO2 substrates, indicating the high quality of the films.

14.
J Phys Chem Lett ; 13(34): 8062-8077, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35997300

RESUMO

Two-dimensional (2D) polymers have garnered widespread interest because of their intriguing physicochemical properties. Envisaged applications in fields including nanodevices, solid-state chemistry, physical organic chemistry, and condensed matter physics, however, demand high-quality and large-scale production. In this perspective, we first introduce exotic band structures of organic frameworks holding honeycomb, kagome, and Lieb lattices. We further discuss how mesoscale ordered 2D polymers can be synthesized by means of choosing suitable monomers and optimizing growth conditions. We describe successful polymerization strategies to introducing a non-benzenoid subunit into a π-conjugated carbon lattice via delicately designed monomer precursors. Also, to obviate transfer and restore the intrinsic properties of π-conjugated polymers, new paradigms of aryl-aryl coupling on inert surfaces are discussed. Recent achievements in the photopolymerization demonstrate the need for monomer design. We conclude the potential applications of these organic networks and project the future possibilities in providing new insights into on-surface polymerization.

15.
J Phys Chem Lett ; 13(45): 10656-10665, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36354193

RESUMO

Point defects in semiconductors usually act as nonradiative charge carrier recombination centers, which severely limit the performance of optoelectronic devices. In this work, by combining time-domain density functional theory with nonadiabatic molecular dynamics simulations, we demonstrate suppressed nonradiative charge carrier recombination and prolonged carrier lifetime in two-dimensional (2D) ReX2 (X = S, Se) with S/Se vacancies. In particular, a S vacancy introduces a shallow hole trap state in ReS2, while a Se vacancy introduces both hole and electron trap states in ReSe2. Photoexcited electrons and holes can be rapidly captured by these defect states, while the release process is slow, which contributes to an elongated photocarrier lifetime. The suppressed charge carrier recombination lies in the vacancy-induced low-frequency phonon modes that weaken electron-phonon coupling, as well as the reduced overlap between electron and hole wave functions that decreases nonadiabatic coupling. This work provides physical insights into the charge carrier dynamics of 2D ReX2, which may stimulate considerable interest in using defect engineering for future optoelectronic nanodevices.

16.
J Phys Chem Lett ; 12(1): 211-217, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33325714

RESUMO

Stanene is a notable two-dimensional topological insulator with a large spin-orbit-coupling-induced band gap. However, the formation of surface alloy intermediates during the epitaxial growth on noble metal substrates prevents the as-grown stanene from preserving its intrinsic electronic states. Here, we show that an intentionally prepared 3×3Au2Sn(111) alloy surface is a suitable inert substrate for growing stanene without the further formation of a complicated surface alloy by scanning tunneling microscopy. The Sn tetramer and clover-shaped Sn pentamer are intermediates for the black-phosphorene-like Sn film at a substrate temperature of <420 K, which transforms to a blue-phosphorene-like stanene with a lattice constant of 0.50 nm above 500 K. First-principles calculations reveal that the epitaxial Sn layer exhibits a lattice registry growth mode and holds a direct energy gap of ∼0.4 eV. Furthermore, interfacial charge-transfer-induced significant Rashba splitting in its electronic structure gives it great potential in spintronic applications.

17.
Adv Mater ; 32(4): e1906873, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31825535

RESUMO

Controlled synthesis of 2D structures on nonmetallic substrate is challenging, yet an attractive approach for the integration of 2D systems into current semiconductor technologies. Herein, the direct synthesis of high-quality 2D antimony, or antimonene, on dielectric copper oxide substrate by molecular beam epitaxy is reported. Delicate scanning tunneling microscopy imaging on the evolution intermediates reveals a segregation growth process on Cu3 O2 /Cu(111), from ordered dimer chains to packed dot arrays, and finally to monolayer antimonene. First-principles calculations demonstrate the strain-modulated band structures in antimonene, which interacts weakly with the oxide surface so that its semiconducting nature is preserved, in perfect agreement with spectroscopic measurements. This work paves the way for large-scale growth and processing of antimonene for practical implementation.

18.
J Phys Chem Lett ; 11(4): 1317-1329, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31945298

RESUMO

An atomic layer of tin in a buckled honeycomb lattice, termed stanene, is a promising large-gap two-dimensional topological insulator for realizing room-temperature quantum-spin-Hall effect and therefore has drawn tremendous interest in recent years. Because the electronic structures of Sn allotropes are sensitive to lattice strain, e.g. the semimetallic α-phase of Sn can transform into a three-dimensional topological Dirac semimetal under compressive strain, recent experimental advances have demonstrated that stanene layers on different substrates can also host various electronic properties relating to in-plane strain, interfacial charge transfer, layer thickness, and so on. Thus, comprehensive understanding of the growth mechanism at the atomic scale is highly desirable for precise control of such tunable properties. Herein, the fundamental properties of stanene and α-Sn films, recent achievements in epitaxial growth, challenges in high-quality synthesis, and possible applications of stanene are discussed.

19.
ACS Nano ; 14(2): 2385-2394, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32031783

RESUMO

In recent years, two-dimensional (2D) group VA elemental materials have attracted considerable interest from physics/chemistry and materials science communities, with particular attention paid to honeycomb blue phosphorene. To date, phosphorene is limited to its α-phase and small sizes because it can only be produced by exfoliating black phosphorus crystals. Here, we report the direct synthesis of high-quality phosphorene on a nonmetallic copper oxide substrate by molecular beam epitaxy. By combining scanning tunneling microscopy/spectroscopy, X-ray photoelectron spectroscopy, and first-principles calculations, we demonstrate the growth intermediates and electronic structures of phosphorene on Cu3O2/Cu(111). Surprisingly, the grown phosphorene has a flat honeycomb lattice, similar to graphene, which exhibits a metallic nature. We reveal that the growth mechanism and morphology of phosphorene are strongly correlated with the surface structures of prepared copper oxide, and the resulting phosphorene can be stabilized after high-temperature annealing above 600 K even in oxygen gas. The high stability is closely related to the irregular Moiré pattern and structural corrugations of phosphorene on Cu3O2/Cu(111) that efficiently relieve the surface strain. These results shed light on future fabrication of large-scale, versatile 2D structures for interconnect and device integration.

20.
ACS Nano ; 13(9): 10622-10630, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31487147

RESUMO

Epitaxial two-dimensional (2D) nanostructures with regular patterns show great promise as templates for adsorbate confinement. Prospectively, employing 2D semiconductors with reduced density of states leads to a long excited-state lifetime that allows us to directly image the dynamics of the adsorbate. We show that epitaxial blue phosphorene (blueP) on Au(111) provides such a platform to trap water molecules in the periodic nanopores without formation of strong bonds. The trapped water aggregate is tentatively assigned to a hexamer based on our scanning tunneling microscopy studies and first-principles calculations. Real-space observation of conformational switching of the hexamer induced by inelastic electrons is achieved by using low-temperature scanning tunneling microscopy with molecular resolution. We found a localized interfacial charge rearrangement between the water hexamer and P atoms underneath that is responsible for the reversible desorption and adsorption of water molecules by changing the sample bias polarity from positive to negative, offering a promising strategy for engineering the electronic properties of blueP.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa