Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ren Fail ; 46(2): 2373276, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38967134

RESUMO

BACKGROUND: Podocytes, as intrinsic renal cells, can also express MHC-II and costimulatory molecules under inflammatory conditions, suggesting that they may act as antigen-presenting cells (APCs) to activate immune cell responses and then lead to immune-mediated renal injury. They are already recognized as main targets in the pathogenic mechanism of hepatitis B virus (HBV)-associated glomerulonephritis (HBV-GN). Previous studies also have indicated that inflammatory cells infiltration and immune-mediated tissue injury are evident in the kidney samples of patients with HBV-GN. However, the role of podocytes immune disorder in the pathogenic mechanism of HBV-GN remains unclear. METHODS: Renal function and inflammatory cells infiltration were measured in HBV transgenic (HBV-Tg) mice. In vitro, podocytes/CD4+ T cells or macrophages co-culture system was established. Then, the expression of HBx, CD4, and CD68 was determined by immunohistochemistry, while the expression of MHC-II, CD40, and CD40L was determined by immunofluorescence. Co-stimulatory molecules expression was examined by flow cytometry. The levels of inflammatory factors were detected by ELISA. RESULTS: In vivo, renal function was obviously impaired in HBV-Tg mice. HBx was significantly upregulated and immune cells infiltrated in the glomerulus of HBV-Tg mice. Expression of MHC-II and costimulatory molecule CD40 increased in the podocytes of HBV-Tg mice; CD4+ T cells exhibited increased CD40L expression in glomerulus. In vitro, CD40 expression was markedly elevated in HBx-podocytes. In co-culture systems, HBx-podocytes stimulated CD4+ T cells activation and caused the imbalance between IFN-γ and IL-4. HBx-podocytes also enhanced the adhesion ability of macrophages and induced the release of proinflammatory mediators. CONCLUSION: Taken together, these podocyte-related immune disorder may be involved in the pathogenic mechanism of HBV-GN.


Assuntos
Glomerulonefrite , Vírus da Hepatite B , Camundongos Transgênicos , Podócitos , Transativadores , Proteínas Virais Reguladoras e Acessórias , Animais , Podócitos/imunologia , Podócitos/patologia , Podócitos/metabolismo , Camundongos , Transativadores/metabolismo , Transativadores/genética , Glomerulonefrite/imunologia , Glomerulonefrite/patologia , Glomerulonefrite/virologia , Vírus da Hepatite B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Hepatite B/imunologia , Hepatite B/complicações , Humanos , Técnicas de Cocultura , Masculino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
2.
J Colloid Interface Sci ; 664: 74-83, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460386

RESUMO

Active pharmaceutical ingredients (APIs) crystal preparation is a significant issue for the pharmaceutical development attributed to the effect on anti-inflammatory, anti-bacteria, and anti-viral, etc. While, the massive preparation of API crystal with high polymorphism selectivity is still a pendent challenge. Here, we firstly proposed a criterion according to the molecular aggregation, molecular orientation, and hydrogen bond energy between INA molecules from molecular dynamics (MD) simulations, which predicted the hydrogen bond architecture in crystal under different electric fields, hinting the recognition of crystal polymorphism. Then, an electric field governing confined liquid crystallization was constructed to achieve the INA crystal polymorphism screening relying on the criterion. Further, magnifying confined liquid volume by 5000 times from 1.0 µL to 5.0 mL realized the massive preparation of INA crystal with high polymorphic purity (>98.4%), giving a unique pathway for crystal engineering and pharmaceutical industry on the development of innovative and generic API based drugs.

3.
ACS Nano ; 18(21): 13794-13807, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38741414

RESUMO

Gout flare-up, commonly resulting from monosodium urate monohydrate (MSUM) crystallization, has led to painful inflammatory arthritis among hundreds of millions of people. Herein, a kind of hydrogel nanoparticles (HNPs) with specific properties was developed, aimed at providing a promising pathway for MSUM crystallization control. The experimental and molecular dynamics simulation results synchronously indicate that the fabricated HNPs achieve efficient inhibition of MSUM crystallization governed by the mechanism of "host-guest interaction" even under very low-dose administration. HNPs as the host dispersed in the hyperuricemic model effectively lift the relative heterogeneous nucleation barrier of the MSUM crystal and hinder solute aggregation with strong electronegativity and hydrophobicity. The initial appearance of MSUM crystals was then delayed from 94 to 334 h. HNPs as the guest on the surface of the formed crystal can decelerate the growth rate by anchoring ions and occupying the active sites on the surface, and the terminal yield of the MSUM crystal declined to less than 1% of the control group. The good biocompatibility of HNPs (cell viability > 94%) renders it possible for future clinical applications. This study can guide the rational design of inhibitory nanomaterials and the development of their application in the control of relevant pathological crystallization.


Assuntos
Cristalização , Hidrogéis , Simulação de Dinâmica Molecular , Nanopartículas , Ácido Úrico , Ácido Úrico/química , Hidrogéis/química , Nanopartículas/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Tamanho da Partícula , Íons/química , Propriedades de Superfície
4.
J Colloid Interface Sci ; 648: 365-375, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301161

RESUMO

Herein, a facile bionic research platform with fabricated hydrogel composite membrane (HCM) is constructed to uncover the effects of the main components of coffee's metabolites on MSUM crystallization. Tailored and biosafety polyethylene glycol diacrylate/N-isopropyl acrylamide (PEGDA/NIPAM) HCM allows the proper mass transfer of coffee's metabolites and can well simulate the process of coffee's metabolites acting in the joint system. With the validations of this platform, it is shown that chlorogenic acid (CGA) can hinder the MSUM crystals formation from 45 h (control group) to 122 h (2 mM CGA), which is the most likely reason that reduces the risk of gout after long-term coffee consumption. Molecular dynamics simulation further indicates that the high interaction energy (Eint) between CGA and MSUM crystal surface and the high electronegativity of CGA both contribute to the restraint of MSUM crystal formation. In conclusion, the fabricated HCM, as the core functional materials of the research platform, presents the understanding of the interaction between coffee consumption and gout control.


Assuntos
Gota , Ácido Úrico , Humanos , Ácido Úrico/química , Café , Hidrogéis , Cristalização , Gota/metabolismo
5.
ACS Appl Mater Interfaces ; 14(3): 4739-4749, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35015497

RESUMO

Gas-liquid (G-L) reactive crystallization is a major technology for advanced materials construction, which requires a short diffusion path on the interface to ensure the reactant supply and stable crystal nucleation under ultrahigh supersaturation. Herein, a covalent organic framework (COF) membrane with homo hierarchical pore structures was proposed as an effective interfacial material for the regulation of confined reactive crystallization. By combining the ordered nanopores of COFs and micropores of anodic aluminum oxide (AAO), the COF membrane simultaneously provided an excellent nanoscale diffusion-reaction regulation network as the molecular-level confined G-L reactive interface and adjustable submicrometer gas mass transfer channels. The highly selective construction of CaCO3 superstructures was then achieved. When the submicrometer primary pore size rp of the constructed COF membrane ranged from 120 to 1.6 nm, the diffusion mechanism of CO2 varied from viscous flow diffusion to Knudsen diffusion. The growth orientation of CaCO3 crystals was well confined to obtain spindle-shaped crystals with high selectivity. Meanwhile, the crystal selectivity factor (cube/sphere) increased from 0 to 3.53 under the low interfacial nuclear barrier. Thus, the COF membrane with coupled micro-nanostructures successfully screened the directional preparation conditions for diverse CaCO3 superstructures, which also paved a meaningful path for the functional application of COFs in accurate mass transfer control and confined chemical reactions.

6.
ACS Nano ; 14(12): 17376-17386, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33196181

RESUMO

Membrane distillation (MD) holds great promise for high-saline solution treatment, but it is typically impeded by the trade-off between the high mass transfer and antifouling properties of the membrane. Herein, a new MD utilized membrane with bioinspired micro/nanostructure (lotus leaf and fish gill) was constructed on commercial PP membrane, which can simultaneously enhance the permeation flux and antifouling in the hypersaline MD operation. On the basis of the classic nucleation theory and hydrodynamics simulation, the nanoscale structure can intensify the interfacial nanoscale turbulent flow and hinder the crystal deposition, which works like the fish gill. In addition, the optimized nanoscale feature size renders the membrane with the heterogeneous nucleation barrier very similar to the homogeneous system, which works like the lotus leaf and hinders the induced nucleation effectively. The microscale structure as the supporting platform of nanostructure can additionally enlarge the effective evaporative surface with superior hydrophobicity and then promote the permeation transfer through the membrane. The hybrid micro/nanostructures render the fabricated membrane with excellent high-permeation flux and significantly prolonged fouling induction time, which sheds light on a new approach for the development of ideal MD utilized membrane.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa