Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 29(16): 24684-24694, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34614819

RESUMO

In this paper, two-dimensional material Sb2Te3 nanosheets are fabricated and the optical nonlinear response is investigated. A laser diode (LD) end-pumped doubly Q-switched Tm:YAP laser with electro-optic modulator (EOM) and Sb2Te3 nanosheets based saturable absorber (SA) is presented. The shortest pulse duration of 38 ns is achieved at the pulse repetition frequency of 100 Hz, corresponding to the highest peak power of 111.8 kW. The double Q-switching technique shows the advantages of pulse duration compression and peak power improvement. The coupled rate equations for the doubly Q-switched laser are developed and the corresponding numerical simulation agrees with the experimental results. We believe that the Sb2Te3 is a potential nanomaterial for the application in optoelectronic field.

2.
Nanotechnology ; 32(37)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34107461

RESUMO

In this paper, the Nb2CTxMXene nanosheets were fabricated and the corresponding microstructures were investigated. The nonlinear optical response was illustrated by open aperture Z-scan and I-scan methods. The ground and the excited state absorption cross-sections of 2D Nb2CTxMXene were also investigated. As the saturable absorber (SA), the Nb2CTxMXene was applied in the passively Q-switched Tm:YAP laser. 1.96µs Q-switched pulses with 3.97 W peak power were achieved at the repetition frequency of 80 kHz. Further theoretical model was built by using the coupled rate equations in simulating the dynamic process of the passively Q-switched Tm:YAP laser. The numerical simulation results are fundamentally in agreement with the experimental results, which proves the Nb2CTxMXene can be a good potential nanomaterial for further optoelectronic applications.

3.
Nanomaterials (Basel) ; 11(10)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34685046

RESUMO

In the current study, layered metallic vanadium disulfide (VS2) is fabricated by a liquid-phase exfoliation method, and its microstructures as well as optical characteristics are investigated. Based on first-principles calculations, the band structure and density of the states of both bulk T-VS2 and monolayer H-VS2 are illustrated, showing the metallic behavior with a zero band gap. By using VS2 as the saturable absorber in a doubly Q-switched Tm:YAP laser with an EOM, the Q-switching laser pulses at 2 µm with 22 ns and 200 Hz are generated, corresponding to the single pulse energy of 755 µJ and the peak power of 34.3 kW. The coupled rate equations of the doubly Q-switched laser are given, and the numerical simulations agree with the experimental results. The results indicate that VS2 is a promising nanomaterial due to its nonlinear optical property. The doubly Q-switched laser demonstrates a high level of performance in reducing pulse width and enhancing pulse peak power.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa