Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 626(7999): 555-564, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356065

RESUMO

The possibility that the Amazon forest system could soon reach a tipping point, inducing large-scale collapse, has raised global concern1-3. For 65 million years, Amazonian forests remained relatively resilient to climatic variability. Now, the region is increasingly exposed to unprecedented stress from warming temperatures, extreme droughts, deforestation and fires, even in central and remote parts of the system1. Long existing feedbacks between the forest and environmental conditions are being replaced by novel feedbacks that modify ecosystem resilience, increasing the risk of critical transition. Here we analyse existing evidence for five major drivers of water stress on Amazonian forests, as well as potential critical thresholds of those drivers that, if crossed, could trigger local, regional or even biome-wide forest collapse. By combining spatial information on various disturbances, we estimate that by 2050, 10% to 47% of Amazonian forests will be exposed to compounding disturbances that may trigger unexpected ecosystem transitions and potentially exacerbate regional climate change. Using examples of disturbed forests across the Amazon, we identify the three most plausible ecosystem trajectories, involving different feedbacks and environmental conditions. We discuss how the inherent complexity of the Amazon adds uncertainty about future dynamics, but also reveals opportunities for action. Keeping the Amazon forest resilient in the Anthropocene will depend on a combination of local efforts to end deforestation and degradation and to expand restoration, with global efforts to stop greenhouse gas emissions.


Assuntos
Florestas , Aquecimento Global , Árvores , Secas/estatística & dados numéricos , Retroalimentação , Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , Árvores/crescimento & desenvolvimento , Incêndios Florestais/estatística & dados numéricos , Incerteza , Recuperação e Remediação Ambiental/tendências
2.
Nature ; 621(7978): 318-323, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37612502

RESUMO

The Amazon forest carbon sink is declining, mainly as a result of land-use and climate change1-4. Here we investigate how changes in law enforcement of environmental protection policies may have affected the Amazonian carbon balance between 2010 and 2018 compared with 2019 and 2020, based on atmospheric CO2 vertical profiles5,6, deforestation7 and fire data8, as well as infraction notices related to illegal deforestation9. We estimate that Amazonia carbon emissions increased from a mean of 0.24 ± 0.08 PgC year-1 in 2010-2018 to 0.44 ± 0.10 PgC year-1 in 2019 and 0.52 ± 0.10 PgC year-1 in 2020 (± uncertainty). The observed increases in deforestation were 82% and 77% (94% accuracy) and burned area were 14% and 42% in 2019 and 2020 compared with the 2010-2018 mean, respectively. We find that the numbers of notifications of infractions against flora decreased by 30% and 54% and fines paid by 74% and 89% in 2019 and 2020, respectively. Carbon losses during 2019-2020 were comparable with those of the record warm El Niño (2015-2016) without an extreme drought event. Statistical tests show that the observed differences between the 2010-2018 mean and 2019-2020 are unlikely to have arisen by chance. The changes in the carbon budget of Amazonia during 2019-2020 were mainly because of western Amazonia becoming a carbon source. Our results indicate that a decline in law enforcement led to increases in deforestation, biomass burning and forest degradation, which increased carbon emissions and enhanced drying and warming of the Amazon forests.


Assuntos
Dióxido de Carbono , Sequestro de Carbono , Conservação dos Recursos Naturais , Política Ambiental , Aplicação da Lei , Floresta Úmida , Biomassa , Brasil , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Política Ambiental/legislação & jurisprudência , Atmosfera/química , Incêndios Florestais/estatística & dados numéricos , Conservação dos Recursos Naturais/estatística & dados numéricos , El Niño Oscilação Sul , Secas/estatística & dados numéricos
3.
Nature ; 595(7867): 388-393, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34262208

RESUMO

Amazonia hosts the Earth's largest tropical forests and has been shown to be an important carbon sink over recent decades1-3. This carbon sink seems to be in decline, however, as a result of factors such as deforestation and climate change1-3. Here we investigate Amazonia's carbon budget and the main drivers responsible for its change into a carbon source. We performed 590 aircraft vertical profiling measurements of lower-tropospheric concentrations of carbon dioxide and carbon monoxide at four sites in Amazonia from 2010 to 20184. We find that total carbon emissions are greater in eastern Amazonia than in the western part, mostly as a result of spatial differences in carbon-monoxide-derived fire emissions. Southeastern Amazonia, in particular, acts as a net carbon source (total carbon flux minus fire emissions) to the atmosphere. Over the past 40 years, eastern Amazonia has been subjected to more deforestation, warming and moisture stress than the western part, especially during the dry season, with the southeast experiencing the strongest trends5-9. We explore the effect of climate change and deforestation trends on carbon emissions at our study sites, and find that the intensification of the dry season and an increase in deforestation seem to promote ecosystem stress, increase in fire occurrence, and higher carbon emissions in the eastern Amazon. This is in line with recent studies that indicate an increase in tree mortality and a reduction in photosynthesis as a result of climatic changes across Amazonia1,10.


Assuntos
Ciclo do Carbono , Sequestro de Carbono , Mudança Climática/estatística & dados numéricos , Conservação dos Recursos Naturais/estatística & dados numéricos , Florestas , Atmosfera/química , Dióxido de Carbono/análise , Monóxido de Carbono/análise , Atividades Humanas , Fotossíntese , Chuva , Estações do Ano , Temperatura
4.
Funct Integr Genomics ; 23(2): 101, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36964864

RESUMO

Biodiversity is proposed as a sustainable alternative for the economic development of high-biodiversity regions. Especially in the field of biodiversity genomics, the development of low-cost DNA sequencing opens an opportunity for new actors beyond academia to engage in genomic sequencing. However, it is challenging to adequately compensate non-academic actors such as local populations for their contribution to the innovation process, preventing better bioeconomy development. Although many repositories register genomic data to support biodiversity research, they do not facilitate the fair sharing of economic benefits. In this work, we propose the creation of the Amazon Biobank, a community-based genetic database. We employed blockchain to build a transparent and verifiable log of transactions involving genomic data, and we used smart contracts to implement an internal monetary system for all participants who collect, insert, process, store, and validate genomic data. We also used peer-to-peer solutions to allow users with commodity computers to collaborate with the storage and distribution of DNA files. By combining emerging technologies, Amazon Biobank provides adequate benefit-sharing among all participants that collaborate with data, knowledge, and computational resources. It also provides traceability and auditability, allowing easy association between biotechnological research and DNA data. In addition, the solution is highly scalable and less dependent on the trust deposited in any system player. Therefore, Amazon Biobank can become an important stepping stone to unlock the potential of bioeconomy in rich ecosystems such as the Amazon Rainforest.


Assuntos
Bancos de Espécimes Biológicos , Ecossistema , Humanos , Genômica , Bases de Dados Genéticas , DNA
5.
An Acad Bras Cienc ; 95(1): e20211629, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37162084

RESUMO

This article performs an analysis of female participation in science, in the Brazilian system of graduate studies and scientific research as a case study. This is relevant because science is a central supporting structure for modern societies and, therefore, a detailed analysis of the scientific power structure behind academic policy creation can reveal aspects of androcentrism in scientific activity. The main goal of this work is to identify the process of misogyny in science by describing its reproductive pattern. Our results show that women are around 50% of the undergraduate and graduate students when all fields are taken into consideration, but only 37% of the researchers in the CNPq system. We also observe a significant increase in female percentage within scientific activities at the initial and intermediary levels, except for the most prestigious areas as hard science. However, a scissor effect is identified between the initial level and the more prominent positions. This unbalanced participation reveals that female occupations in science are mostly as lower workforce since women are quite far from the social decision-making circles in this career.


Assuntos
Educação de Pós-Graduação , Tecnologia , Humanos , Feminino , Brasil , Reprodução , Pesquisadores
6.
Proc Natl Acad Sci U S A ; 115(46): 11671-11679, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30397144

RESUMO

Large uncertainties still dominate the hypothesis of an abrupt large-scale shift of the Amazon forest caused by climate change [Amazonian forest dieback (AFD)] even though observational evidence shows the forest and regional climate changing. Here, we assess whether mitigation or adaptation action should be taken now, later, or not at all in light of such uncertainties. No action/later action would result in major social impacts that may influence migration to large Amazonian cities through a causal chain of climate change and forest degradation leading to lower river-water levels that affect transportation, food security, and health. Net-present value socioeconomic damage over a 30-year period after AFD is estimated between US dollar (USD) $957 billion (×109) and $3,589 billion (compared with Gross Brazilian Amazon Product of USD $150 billion per year), arising primarily from changes in the provision of ecosystem services. Costs of acting now would be one to two orders of magnitude lower than economic damages. However, while AFD mitigation alternatives-e.g., curbing deforestation-are attainable (USD $64 billion), their efficacy in achieving a forest resilience that prevents AFD is uncertain. Concurrently, a proposed set of 20 adaptation measures is also attainable (USD $122 billion) and could bring benefits even if AFD never occurs. An interdisciplinary research agenda to fill lingering knowledge gaps and constrain the risk of AFD should focus on developing sound experimental and modeling evidence regarding its likelihood, integrated with socioeconomic assessments to anticipate its impacts and evaluate the feasibility and efficacy of mitigation/adaptation options.


Assuntos
Conservação dos Recursos Naturais/economia , Agricultura Florestal/economia , Agricultura Florestal/métodos , Brasil , Mudança Climática , Simulação por Computador , Ecossistema , Florestas , Políticas , Medição de Risco/métodos , Árvores
8.
Proc Natl Acad Sci U S A ; 113(39): 10759-68, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27638214

RESUMO

For half a century, the process of economic integration of the Amazon has been based on intensive use of renewable and nonrenewable natural resources, which has brought significant basin-wide environmental alterations. The rural development in the Amazonia pushed the agricultural frontier swiftly, resulting in widespread land-cover change, but agriculture in the Amazon has been of low productivity and unsustainable. The loss of biodiversity and continued deforestation will lead to high risks of irreversible change of its tropical forests. It has been established by modeling studies that the Amazon may have two "tipping points," namely, temperature increase of 4 °C or deforestation exceeding 40% of the forest area. If transgressed, large-scale "savannization" of mostly southern and eastern Amazon may take place. The region has warmed about 1 °C over the last 60 y, and total deforestation is reaching 20% of the forested area. The recent significant reductions in deforestation-80% reduction in the Brazilian Amazon in the last decade-opens up opportunities for a novel sustainable development paradigm for the future of the Amazon. We argue for a new development paradigm-away from only attempting to reconcile maximizing conservation versus intensification of traditional agriculture and expansion of hydropower capacity-in which we research, develop, and scale a high-tech innovation approach that sees the Amazon as a global public good of biological assets that can enable the creation of innovative high-value products, services, and platforms through combining advanced digital, biological, and material technologies of the Fourth Industrial Revolution in progress.


Assuntos
Agricultura , Mudança Climática , Conservação dos Recursos Naturais , Brasil , Florestas , Geografia , Produto Interno Bruto , Atividades Humanas , Humanos , Internacionalidade , Transpiração Vegetal/fisiologia , Fatores de Risco , Estações do Ano
9.
An Acad Bras Cienc ; 89(1 Suppl 0): 773-786, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28492731

RESUMO

The Brazilian Scientific Mobility Program - Science without Borders (SwB) - saw the concession of over 101 thousand scholarships for Brazilian STEM students and education professionals to attend universities worldwide. As the first phase of this program ends, it is time to take a first look at its impacts, mainly on the undergraduate student body (79% of total scholarships implemented). Benefits included a 6-month language course (optional), a one year undergraduate course and optional 2 month internship in a university, government laboratory or technology company. Positive impacts have been seen on entrance into post-graduate programs (>20% of SwB students compared to <5% of the overall student body of similar fields), as well as high representation of lower income families (>50% from families with less than 6 minimum wages per month). The impact of the program will need to be evaluated over the next years, but innovation on the part of the students is already apparent. Any new SwB program needs to take into account the lessons learned from this first experience and therefore recommendations are presented.


Assuntos
Educação de Pós-Graduação/estatística & dados numéricos , Cooperação Internacional , Ciência/educação , Brasil , Humanos , Avaliação de Programas e Projetos de Saúde
10.
Glob Chang Biol ; 22(5): 1821-40, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26511401

RESUMO

Following an intense occupation process that was initiated in the 1960s, deforestation rates in the Brazilian Amazon have decreased significantly since 2004, stabilizing around 6000 km(2) yr(-1) in the last 5 years. A convergence of conditions contributed to this, including the creation of protected areas, the use of effective monitoring systems, and credit restriction mechanisms. Nevertheless, other threats remain, including the rapidly expanding global markets for agricultural commodities, large-scale transportation and energy infrastructure projects, and weak institutions. We propose three updated qualitative and quantitative land-use scenarios for the Brazilian Amazon, including a normative 'Sustainability' scenario in which we envision major socio-economic, institutional, and environmental achievements in the region. We developed an innovative spatially explicit modelling approach capable of representing alternative pathways of the clear-cut deforestation, secondary vegetation dynamics, and the old-growth forest degradation. We use the computational models to estimate net deforestation-driven carbon emissions for the different scenarios. The region would become a sink of carbon after 2020 in a scenario of residual deforestation (~1000 km(2) yr(-1)) and a change in the current dynamics of the secondary vegetation - in a forest transition scenario. However, our results also show that the continuation of the current situation of relatively low deforestation rates and short life cycle of the secondary vegetation would maintain the region as a source of CO2 - even if a large portion of the deforested area is covered by secondary vegetation. In relation to the old-growth forest degradation process, we estimated average gross emission corresponding to 47% of the clear-cut deforestation from 2007 to 2013 (using the DEGRAD system data), although the aggregate effects of the postdisturbance regeneration can partially offset these emissions. Both processes (secondary vegetation and forest degradation) need to be better understood as they potentially will play a decisive role in the future regional carbon balance.


Assuntos
Poluentes Atmosféricos/análise , Carbono/análise , Conservação dos Recursos Naturais , Florestas , Brasil , Simulação por Computador , Monitoramento Ambiental
12.
Nature ; 453(7192): 212-5, 2008 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-18464740

RESUMO

The Amazon rainforest plays a crucial role in the climate system, helping to drive atmospheric circulations in the tropics by absorbing energy and recycling about half of the rainfall that falls on it. This region (Amazonia) is also estimated to contain about one-tenth of the total carbon stored in land ecosystems, and to account for one-tenth of global, net primary productivity. The resilience of the forest to the combined pressures of deforestation and global warming is therefore of great concern, especially as some general circulation models (GCMs) predict a severe drying of Amazonia in the twenty-first century. Here we analyse these climate projections with reference to the 2005 drought in western Amazonia, which was associated with unusually warm North Atlantic sea surface temperatures (SSTs). We show that reduction of dry-season (July-October) rainfall in western Amazonia correlates well with an index of the north-south SST gradient across the equatorial Atlantic (the 'Atlantic N-S gradient'). Our climate model is unusual among current GCMs in that it is able to reproduce this relationship and also the observed twentieth-century multidecadal variability in the Atlantic N-S gradient, provided that the effects of aerosols are included in the model. Simulations for the twenty-first century using the same model show a strong tendency for the SST conditions associated with the 2005 drought to become much more common, owing to continuing reductions in reflective aerosol pollution in the Northern Hemisphere.


Assuntos
Aerossóis/análise , Desastres/estatística & dados numéricos , Ecossistema , Poluição Ambiental/estatística & dados numéricos , Efeito Estufa , Modelos Teóricos , Árvores/fisiologia , Oceano Atlântico , Dióxido de Carbono/análise , Desastres/história , História do Século XX , História do Século XXI , Oceano Pacífico , Probabilidade , Chuva , Estações do Ano , América do Sul , Temperatura
13.
An Acad Bras Cienc ; 86(2): 621-632, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30514026

RESUMO

Amazon tropical forests are being replaced by pasturelands and croplands, but they sometimes revert to regrowth forest when abandoned after a period of agricultural use. Research suggests that this secondary regrowth is limited by climate and nutrient availability and, using a coupled biosphere-atmosphere model, we investigated patterns in the regrowth of the Amazon rainforest after a full deforestation event, considering different types of nutrient stress. We found that, over a 50 year regrowth period, the reduction of precipitation caused by large-scale deforestation was not sufficient to prevent secondary forest regrowth, but this decrease in precipitation combined with nutrient limitation, due to logging and frequent fires, did indeed prevent forest regrowth in central and southern Amazonia, leading to a savannization. These results are concerning, as the northern Mato Grosso region has the highest clearing rate in Amazonia. The low resilience of the forest under nutrient stress indicates that a large scale disturbance could greatly expand the area suitable for cropland, accelerating forest disappearance.

14.
Zootaxa ; 3780: 558-66, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24871851

RESUMO

A new species of Riodinidae, Pheles caatingensis Callaghan & Nobre, sp. nov. from Ceará and Pernambuco State in Brazil is described, along with its habitat, behavior and taxonomic differences with other members of the genus Pheles. Notes are included on distribution and mimetic relationships with other sympatric insects.


Assuntos
Lepidópteros/classificação , Distribuição Animal , Estruturas Animais/anatomia & histologia , Estruturas Animais/crescimento & desenvolvimento , Animais , Tamanho Corporal , Brasil , Feminino , Lepidópteros/anatomia & histologia , Lepidópteros/crescimento & desenvolvimento , Masculino
15.
Sci Rep ; 14(1): 5131, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429332

RESUMO

Land use change and atmospheric composition, two drivers of climate change, can interact to affect both local and remote climate regimes. Previous works have considered the effects of greenhouse gas buildup in the atmosphere and the effects of Amazon deforestation in atmospheric general circulation models. In this study, we investigate the impacts of the Brazilian Amazon savannization and global warming in a fully coupled ocean-land-sea ice-atmosphere model simulation. We find that both savannization and global warming individually lengthen the dry season and reduce annual rainfall over large tracts of South America. The combined effects of land use change and global warming resulted in a mean annual rainfall reduction of 44% and a dry season length increase of 69%, when averaged over the Amazon basin, relative to the control run. Modulation of inland moisture transport due to savannization shows the largest signal to explain the rainfall reduction and increase in dry season length over the Amazon and Central-West. The combined effects of savannization and global warming resulted in maximum daily temperature anomalies, reaching values of up to 14 °C above the current climatic conditions over the Amazon. Also, as a consequence of both climate drivers, both soil moisture and surface runoff decrease over most of the country, suggesting cascading negative future impacts on both agriculture production and hydroelectricity generation.

16.
Science ; 381(6664): 1261, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37733850

RESUMO

Early in August this year, a high-profile summit was held in Belém, Brazil, where the eight Amazonian countries discussed the future of the Amazon. The nations recognized that the Amazon is very close to reaching a tipping point for turning into a degraded ecosystem. The result of their discussions was the Belém Declaration, an ambitious plan to protect and conserve the Amazon forests and to support Indigenous Peoples and local communities. Concern arose, however, because they failed to agree on attaining zero deforestation by 2030 and on avoiding new explorations in the Amazon for fossil fuel. The Declaration also lacks specific and measurable indicators. The ministers of Foreign Affairs therefore have a very important role in further refining the agenda and deadlines so that the Belém Declaration can be implemented.


Assuntos
Conservação dos Recursos Naturais , Florestas , Humanos , Brasil , Combustíveis Fósseis , Povos Indígenas
17.
Sci Rep ; 13(1): 15928, 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741891

RESUMO

This study presents novel insight into the mechanisms of Atlantic Meridional Overturning Circulation (AMOC) reduction and its recovery under a warmer climate scenario. An one-thousand-year-long numerical simulation of a global coupled ocean-ice-atmosphere climate model, subjected to a stationary atmospheric radiative forcing, depict a coherent picture of the Arctic sea ice melting as a trigger for the initial AMOC reduction, along with decreases in the northward fluxes of salt and heat. Further atmospheric-driven ocean processes contribute to an erosion of the stable stratification of the fresher, yet colder waters in the surface layers of the North Atlantic, contributing to the recovery of a permanently altered AMOC.

18.
Science ; 379(6630): eabo5003, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36701466

RESUMO

Amazonian environments are being degraded by modern industrial and agricultural activities at a pace far above anything previously known, imperiling its vast biodiversity reserves and globally important ecosystem services. The most substantial threats come from regional deforestation, because of export market demands, and global climate change. The Amazon is currently perched to transition rapidly from a largely forested to a nonforested landscape. These changes are happening much too rapidly for Amazonian species, peoples, and ecosystems to respond adaptively. Policies to prevent the worst outcomes are known and must be enacted immediately. We now need political will and leadership to act on this information. To fail the Amazon is to fail the biosphere, and we fail to act at our peril.


Assuntos
Efeitos Antropogênicos , Ecossistema , Florestas , Humanos , Biodiversidade , Conservação dos Recursos Naturais , Brasil
19.
Sci Adv ; 8(24): eabj3309, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35704589

RESUMO

In recent years, the area affected by forest degradation in the Brazilian Amazon has frequently been higher than deforestation. From August 2006 to July 2019, the degraded area totaled 194,058 km2, representing almost two times the 99,630 km2 deforested in the same period. The impacts of degradation include biodiversity loss and changes in the carbon stocks, affecting the CO2 balance and future climate changes. This paper aims to explore socioeconomic and environmental factors that influence forest degradation, project future scenarios, and assess the impact on the regional carbon balance, combining forest degradation and deforestation-related processes (clear-cut deforestation and secondary vegetation dynamics). We show that, while net CO2 emissions from 2020 to 2050 are 0.74 Gt CO2 in the Sustainable scenario, this value reached 22.63 Gt CO2 in the Fragmentation scenario, an increasingly plausible scenario given the recent trends in the region.

20.
New Phytol ; 187(3): 707-19, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20609116

RESUMO

*We used a climate-vegetation-natural fire (CVNF) conceptual model to evaluate the sensitivity and vulnerability of forest, savanna, and the forest-savanna transition to environmental changes in tropical South America. *Initially, under current environmental conditions, CVNF model results suggested that, in the absence of fires, tropical forests would extend c. 200 km into the presently observed savanna domain. *Environmental changes were then imposed upon the model in temperature, precipitation and lightning strikes. These changes ranged from 2 to 6 degrees C warming, +10 to -20% precipitation change and 0 to 15% increase in lightning frequency, which, in aggregate form, represent expected future climatic changes in response to global warming and deforestation. *The most critical vegetation changes are projected to take place over the easternmost portions of the basin, with a widening of the forest-savanna transition. The transition width would increase from 150 to c. 300 km, with tree cover losses ranging from 20 to 85%. This means that c. 6% of the areas currently covered by forests could potentially turn into grass-dominated savanna landscapes. The mechanism driving tree cover reduction consists of the combination of less favorable climate conditions for trees and more fire activity. In addition, this sensitivity analysis predicts that the current dry shrubland vegetation of northeast Brazil could potentially turn into a bare soil landscape.


Assuntos
Adaptação Fisiológica , Ecossistema , Árvores/fisiologia , Clima Tropical , Simulação por Computador , Incêndios , Geografia , Modelos Biológicos , Chuva , América do Sul , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa