Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(10)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455611

RESUMO

Deep-sea ecological monitoring is increasingly recognized as indispensable for the comprehension of the largest biome on Earth, but at the same time it is subjected to growing human impacts for the exploitation of biotic and abiotic resources. Here, we present the Naples Ecological REsearch (NEREA) stand-alone observatory concept (NEREA-fix), an integrated observatory with a modular, adaptive structure, characterized by a multiparametric video-platform to be deployed in the Dohrn canyon (Gulf of Naples, Tyrrhenian Sea) at ca. 650 m depth. The observatory integrates a seabed platform with optoacoustic and oceanographic/geochemical sensors connected to a surface transmission buoy, plus a mooring line (also equipped with depth-staged environmental sensors). This reinforced high-frequency and long-lasting ecological monitoring will integrate the historical data conducted over 40 years for the Long-Term Ecological Research (LTER) at the station "Mare Chiara", and ongoing vessel-assisted plankton (and future environmental DNA-eDNA) sampling. NEREA aims at expanding the observational capacity in a key area of the Mediterranean Sea, representing a first step towards the establishment of a bentho-pelagic network to enforce an end-to-end transdisciplinary approach for the monitoring of marine ecosystems across a wide range of animal sizes (from bacteria to megafauna).


Assuntos
Ecossistema , Oceanografia , Animais , Monitoramento Ambiental , Feminino , Cavalos , Humanos , Mar Mediterrâneo
2.
Sensors (Basel) ; 13(11): 14740-53, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24177726

RESUMO

Field measurements of the swimming activity rhythms of fishes are scant due to the difficulty of counting individuals at a high frequency over a long period of time. Cabled observatory video monitoring allows such a sampling at a high frequency over unlimited periods of time. Unfortunately, automation for the extraction of biological information (i.e., animals' visual counts per unit of time) is still a major bottleneck. In this study, we describe a new automated video-imaging protocol for the 24-h continuous counting of fishes in colorimetrically calibrated time-lapse photographic outputs, taken by a shallow water (20 m depth) cabled video-platform, the OBSEA. The spectral reflectance value for each patch was measured between 400 to 700 nm and then converted into standard RGB, used as a reference for all subsequent calibrations. All the images were acquired within a standardized Region Of Interest (ROI), represented by a 2 × 2 m methacrylate panel, endowed with a 9-colour calibration chart, and calibrated using the recently implemented "3D Thin-Plate Spline" warping approach in order to numerically define color by its coordinates in n-dimensional space. That operation was repeated on a subset of images, 500 images as a training set, manually selected since acquired under optimum visibility conditions. All images plus those for the training set were ordered together through Principal Component Analysis allowing the selection of 614 images (67.6%) out of 908 as a total corresponding to 18 days (at 30 min frequency). The Roberts operator (used in image processing and computer vision for edge detection) was used to highlights regions of high spatial colour gradient corresponding to fishes' bodies. Time series in manual and visual counts were compared together for efficiency evaluation. Periodogram and waveform analysis outputs provided very similar results, although quantified parameters in relation to the strength of respective rhythms were different. Results indicate that automation efficiency is limited by optimum visibility conditions. Data sets from manual counting present the larger day-night fluctuations in comparison to those derived from automation. This comparison indicates that the automation protocol subestimate fish numbers but it is anyway suitable for the study of community activity rhythms.


Assuntos
Colorimetria/métodos , Monitoramento Ambiental/métodos , Peixes/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Gravação em Vídeo/métodos , Animais , Colorimetria/instrumentação , Monitoramento Ambiental/instrumentação , Análise de Componente Principal , Gravação em Vídeo/instrumentação
3.
Sci Data ; 10(1): 5, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596792

RESUMO

Multiparametric video-cabled marine observatories are becoming strategic to monitor remotely and in real-time the marine ecosystem. Those platforms can achieve continuous, high-frequency and long-lasting image data sets that require automation in order to extract biological time series. The OBSEA, located at 4 km from Vilanova i la Geltrú at 20 m depth, was used to produce coastal fish time series continuously over the 24-h during 2013-2014. The image content of the photos was extracted via tagging, resulting in 69917 fish tags of 30 taxa identified. We also provided a meteorological and oceanographic dataset filtered by a quality control procedure to define real-world conditions affecting image quality. The tagged fish dataset can be of great importance to develop Artificial Intelligence routines for the automated identification and classification of fishes in extensive time-lapse image sets.


Assuntos
Inteligência Artificial , Ecossistema , Peixes , Animais , Algoritmos , Benchmarking
4.
Sensors (Basel) ; 11(6): 5850-72, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163931

RESUMO

A suitable sampling technology to identify species and to estimate population dynamics based on individual counts at different temporal levels in relation to habitat variations is increasingly important for fishery management and biodiversity studies. In the past two decades, as interest in exploring the oceans for valuable resources and in protecting these resources from overexploitation have grown, the number of cabled (permanent) submarine multiparametric platforms with video stations has increased. Prior to the development of seafloor observatories, the majority of autonomous stations were battery powered and stored data locally. The recently installed low-cost, multiparametric, expandable, cabled coastal Seafloor Observatory (OBSEA), located 4 km off of Vilanova i la Gertrú, Barcelona, at a depth of 20 m, is directly connected to a ground station by a telecommunication cable; thus, it is not affected by the limitations associated with previous observation technologies. OBSEA is part of the European Multidisciplinary Seafloor Observatory (EMSO) infrastructure, and its activities are included among the Network of Excellence of the European Seas Observatory NETwork (ESONET). OBSEA enables remote, long-term, and continuous surveys of the local ecosystem by acquiring synchronous multiparametric habitat data and bio-data with the following sensors: Conductivity-Temperature-Depth (CTD) sensors for salinity, temperature, and pressure; Acoustic Doppler Current Profilers (ADCP) for current speed and direction, including a turbidity meter and a fluorometer (for the determination of chlorophyll concentration); a hydrophone; a seismometer; and finally, a video camera for automated image analysis in relation to species classification and tracking. Images can be monitored in real time, and all data can be stored for future studies. In this article, the various components of OBSEA are described, including its hardware (the sensors and the network of marine and land nodes), software (data acquisition, transmission, processing, and storage), and multiparametric measurement (habitat and bio-data time series) capabilities. A one-month multiparametric survey of habitat parameters was conducted during 2009 and 2010 to demonstrate these functions. An automated video image analysis protocol was also developed for fish counting in the water column, a method that can be used with cabled coastal observatories working with still images. Finally, bio-data time series were coupled with data from other oceanographic sensors to demonstrate the utility of OBSEA in studies of ecosystem dynamics.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Animais , Automação , Biodiversidade , Clorofila/análise , Efeito Doppler , Europa (Continente) , Peixes , Fluorometria/métodos , Geografia , Biologia Marinha/métodos , Oceanografia/métodos , Oceanos e Mares , Dinâmica Populacional , Telecomunicações , Fatores de Tempo , Gravação em Vídeo
5.
Sci Rep ; 9(1): 1708, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30737412

RESUMO

The seasonal timing of recurring biological processes is essential for organisms living in temperate regions. While ample knowledge of these processes exists for terrestrial environments, seasonal timing in the marine environment is relatively understudied. Here, we characterized the annual rhythm of habitat use in six fish species belonging to the Sparidae family, highlighting the main environmental variables that correlate to such rhythms. The study was conducted at a coastal artificial reef through a cabled observatory system, which allowed gathering underwater time-lapse images every 30 minutes consecutively over 3 years. Rhythms of fish counts had a significant annual periodicity in four out of the six studied species. Species-specific temporal patterns were found, demonstrating a clear annual temporal niche partitioning within the studied family. Temperature was the most important environmental variable correlated with fish counts in the proximity of the artificial reef, while daily photoperiod and salinity were not important. In a scenario of human-induced rapid environmental change, tracking phenological shifts may provide key indications about the effects of climate change at both species and ecosystem level. Our study reinforces the efficacy of underwater cabled video-observatories as a reliable tool for long-term monitoring of phenological events.


Assuntos
Peixes/fisiologia , Periodicidade , Animais , Mudança Climática , Peixes/classificação , Dinâmica Populacional , Salinidade , Estações do Ano , Especificidade da Espécie , Imagem com Lapso de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa