Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cerebellum ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165578

RESUMO

The Cerebellar Cognitive Affective/Schmahmann Syndrome (CCAS) manifests as impaired executive control, linguistic processing, visual spatial function, and affect regulation. The CCAS has been described in the spinocerebellar ataxias (SCAs), but its prevalence is unknown. We analyzed results of the CCAS/Schmahmann Scale (CCAS-S), developed to detect and quantify CCAS, in two natural history studies of 309 individuals Symptomatic for SCA1, SCA2, SCA3, SCA6, SCA7, or SCA8, 26 individuals Pre-symptomatic for SCA1 or SCA3, and 37 Controls. We compared total raw scores, domain scores, and total fail scores between Symptomatic, Pre-symptomatic, and Control cohorts, and between SCA types. We calculated scale sensitivity and selectivity based on CCAS category designation among Symptomatic individuals and Controls, and correlated CCAS-S performance against age and education, and in Symptomatic patients, against genetic repeat length, onset age, disease duration, motor ataxia, depression, and fatigue. Definite CCAS was identified in 46% of the Symptomatic group. False positive rate among Controls was 5.4%. Symptomatic individuals had poorer global CCAS-S performance than Controls, accounting for age and education. The domains of semantic fluency, phonemic fluency, and category switching that tap executive function and linguistic processing consistently separated Symptomatic individuals from Controls. CCAS-S scores correlated most closely with motor ataxia. Controls were similar to Pre-symptomatic individuals whose nearness to symptom onset was unknown. The use of the CCAS-S identifies a high CCAS prevalence in a large cohort of SCA patients, underscoring the utility of the scale and the notion that the CCAS is the third cornerstone of clinical ataxiology.

2.
Mov Disord ; 38(1): 113-122, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36318082

RESUMO

BACKGROUND: Juvenile-onset Huntington's disease (JOHD) is a rare form of Huntington's disease (HD) characterized by symptom onset before the age of 21 years. Observational data in this cohort is lacking. OBJECTIVES: Quantify measures of disease progression for use in clinical trials of patients with JOHD. METHODS: Participants who received a motor diagnosis of HD before the age of 21 were included in the Kids-JOHD study. The comparator group consisted of children and young adults who were at-risk for inheriting the genetic mutation that causes HD, but who were found to have a CAG repeat in the non-expanded range (gene non-expanded [GNE]). RESULTS: Data were obtained between March 17, 2006, and February 13, 2020. There were 26 JOHD participants and 78 GNE participants who were comparable on age (16.03 vs. 14.43, respectively) and sex (53.8% female vs. 57.7% female, respectively). The mean annualized decrease in striatal volume in the JOHD group was -3.99% compared to -0.06% in the GNE (mean difference [MD], -3.93%; 95% confidence intervals [CI], [-4.98 to -2.80], FDR < 0.0001). The mean increase in the Unified Huntington's Disease Rating Scale Total Motor Score per year in the JOHD group was 7.29 points compared to a mean decrease of -0.21 point in the GNE (MD, 7.5; 95% CI, [5.71-9.28], FDR < 0·0001). CONCLUSIONS: These findings demonstrate that structural brain imaging and clinical measures in JOHD may be potential biomarkers of disease progression for use in clinical trials. Collaborative efforts are required to validate these results in a larger cohort of patients with JOHD. © 2022 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Huntington , Transtornos dos Movimentos , Criança , Adulto Jovem , Humanos , Feminino , Adulto , Masculino , Doença de Huntington/genética , Doença de Huntington/diagnóstico , Encéfalo , Progressão da Doença , Biomarcadores , Estudos Longitudinais
3.
Cerebellum ; 22(5): 790-809, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35962273

RESUMO

Spinocerebellar ataxias (SCAs) are progressive neurodegenerative disorders, but there is no metric that predicts disease severity over time. We hypothesized that by developing a new metric, the Severity Factor (S-Factor) using immutable disease parameters, it would be possible to capture disease severity independent of clinical rating scales. Extracting data from the CRC-SCA and READISCA natural history studies, we calculated the S-Factor for 438 participants with symptomatic SCA1, SCA2, SCA3, or SCA6, as follows: ((length of CAG repeat expansion - maximum normal repeat length) /maximum normal repeat length) × (current age - age at disease onset) × 10). Within each SCA type, the S-Factor at the first Scale for the Assessment and Rating of Ataxia (SARA) visit (baseline) was correlated against scores on SARA and other motor and cognitive assessments. In 281 participants with longitudinal data, the slope of the S-Factor over time was correlated against slopes of scores on SARA and other motor rating scales. At baseline, the S-Factor showed moderate-to-strong correlations with SARA and other motor rating scales at the group level, but not with cognitive performance. Longitudinally the S-Factor slope showed no consistent association with the slope of performance on motor scales. Approximately 30% of SARA slopes reflected a trend of non-progression in motor symptoms. The S-Factor is an observer-independent metric of disease burden in SCAs. It may be useful at the group level to compare cohorts at baseline in clinical studies. Derivation and examination of the S-factor highlighted challenges in the use of clinical rating scales in this population.


Assuntos
Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/epidemiologia , Gravidade do Paciente , Progressão da Doença
4.
J Pediatr ; 242: 166-173.e3, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34758354

RESUMO

OBJECTIVE: To investigate the associations between neurocognition and white matter integrity in children with chronic kidney disease (CKD). STUDY DESIGN: This cross-sectional study included 17 boys (age 6-16 years) with a diagnosis of mild to moderate (stages 1-3, nondialysis/nontransplant) CKD because of congenital anomalies of the kidney and urinary tract and 20 typically developing community controls. Participants underwent 3T neuroimaging and diffusion-weighted magnetic resonance imaging to assess white matter fractional anisotropy. Multivariable linear regression models were used to evaluate the impact of each group (controls vs CKD) on white matter fractional anisotropy, adjusting for age. Associations between white matter fractional anisotropy and neurocognitive abilities within the CKD group were also evaluated using regression models that were adjusted for age. The false discovery rate was used to account for multiple comparisons; wherein false discovery values <0.10 were considered significant. RESULTS: Global white matter fractional anisotropy was reduced in patients with CKD relative to controls (standardized estimate = -0.38, 95% CI -0.69:-0.07), driven by reductions within the body of the corpus callosum (standardized estimate = -0.44, 95% CI -0.75:-0.13), cerebral peduncle (SE = -0.37, 95% CI -0.67:-0.07), cingulum (hippocampus) (standardized estimate = -0.45, 95% CI -0.75:-0.14), and posterior limb of the internal capsule (standardized estimate = -0.46, 95% CI -0.76:-0.15). Medical variables and neurocognitive abilities were not significantly associated with white matter fractional anisotropy. CONCLUSIONS: White matter development is vulnerable in children with CKD because of congenital causes, even prior to the need for dialysis or transplantation.


Assuntos
Insuficiência Renal Crônica , Substância Branca , Adolescente , Anisotropia , Encéfalo/diagnóstico por imagem , Criança , Estudos Transversais , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Substância Branca/diagnóstico por imagem
5.
Mov Disord ; 37(7): 1526-1531, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35437792

RESUMO

BACKGROUND: Juvenile-onset Huntington's disease (JOHD) is a rare and particularly devastating form of Huntington's disease (HD) for which clinical diagnosis is challenging and robust outcome measures are lacking. Neurofilament light protein (NfL) in plasma has emerged as a prognostic biomarker for adult-onset HD. METHODS: We performed a retrospective analysis of samples and data collected between 2009 and 2020 from the Kids-HD and Kids-JHD studies. Plasma samples from children and young adults with JOHD, premanifest HD (preHD) mutation carriers, and age-matched controls were used to quantify plasma NfL concentrations using ultrasensitive immunoassay. RESULTS: We report elevated plasma NfL concentrations in JOHD and premanifest HD mutation-carrying children. In pediatric HD mutation carriers who were within 20 years of their predicted onset and patients with JOHD, plasma NfL level was associated with caudate and putamen volumes. CONCLUSIONS: Quantifying plasma NfL concentration may assist clinical diagnosis and therapeutic trial design in the pediatric population. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.


Assuntos
Doença de Huntington , Biomarcadores , Criança , Progressão da Doença , Humanos , Doença de Huntington/diagnóstico , Doença de Huntington/genética , Filamentos Intermediários/metabolismo , Proteínas de Neurofilamentos , Estudos Retrospectivos , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Adulto Jovem
6.
Pediatr Res ; 91(7): 1735-1740, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34274959

RESUMO

BACKGROUND: Neurofilament light-chain (NfL) protein is a blood-based marker of neuroaxonal injury. We sought to (1) compare plasma NfL levels in children with chronic kidney disease (CKD) and healthy peers, (2) characterize the relationship between NfL level and kidney function, and (3) evaluate NfL as a predictor of abnormal brain structure in CKD. METHODS: Sixteen children with CKD due to congenital kidney anomalies and 23 typically developing peers were included. Plasma NfL was quantified using single-molecule array immunoassay. Participants underwent structural magnetic resonance imaging. Multiple linear regression models were used to evaluate the association between plasma NfL levels, kidney function, and brain structure. RESULTS: An age × group interaction was identified whereby NfL levels increased with age in the CKD group only (estimate = 0.65; confidence interval (CI) = 0.08-1.22; p = 0.026). Decreased kidney function was associated with higher NfL levels (estimate = -0.10; CI = -0.16 to -0.04; p = 0.003). Lower cerebellar gray matter volume predicted increased plasma NfL levels (estimate = -0.00024; CI = -0.00039 to 0.00009; p = 0.004) within the CKD group. CONCLUSIONS: Children with CKD show accelerated age-related increases in NfL levels. NfL level is associated with lower kidney function and abnormal brain structure in CKD. IMPACT: NfL is a component of the neuronal cytoskeleton providing structural axonal support. Elevated NfL has been described in relation to gray and white matter brain volume loss. We have previously described the abnormal cerebellar gray matter in CKD. We explored the relationship between NfL, CKD, and brain volume. There is an accelerated, age-related increase in NfL level in CKD. Within the CKD sample, NfL level is associated with abnormal kidney function and brain structure. Decreased kidney function may be linked to abnormal neuronal integrity in pediatric CKD.


Assuntos
Proteínas de Neurofilamentos , Insuficiência Renal Crônica , Biomarcadores , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Criança , Substância Cinzenta , Humanos , Filamentos Intermediários
7.
J Neurosci Res ; 99(1): 190-199, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32056295

RESUMO

Studies have shown relationships between white matter abnormalities and cognitive dysfunction in myotonic dystrophy type 1 (DM1), but comprehensive analysis of potential structure-function relationships are lacking. Fifty adult-onset DM1 individuals (33 female) and 68 unaffected adults (45 female) completed the Wechsler Adult Intelligence Scale-IV (WAIS-IV) to determine the levels and patterns of intellectual functioning. Neuroimages were acquired with a 3T scanner and were processed with BrainsTools. Regional brain volumes (regions of interest, ROIs) were adjusted for inter-scanner variation and intracranial volume. Linear regression models were conducted to assess if group by ROI interaction terms significantly predicted WAIS-IV composite scores. Models were adjusted for age and sex. The DM1 group had lower Perceptual Reasoning Index (PRI), Working Memory Index (WMI), and Processing Speed Index (PSI) scores than the unaffected group (PRI t(113)  = -3.28, p = 0.0014; WMI t(114)  = -3.49, p = 0.0007; PSI t(114)  = -2.98, p = 0.0035). The group by hippocampus interaction term was significant for both PRI and PSI (PRI (t(111)  = -2.82, p = 0.0057; PSI (t(112)  = -2.87, p = 0.0049)). There was an inverse association between hippocampal volume and both PRI and PSI in the DM1 group (the higher the volume, the lower the intelligence quotient scores), but no such association was observed in the unaffected group. Enlarged hippocampal volume may underlie some aspects of cognitive dysfunction in adult-onset DM1, suggesting that increased volume of the hippocampus may be pathological.


Assuntos
Encéfalo/patologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Distrofia Miotônica/complicações , Adulto , Idoso , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Distrofia Miotônica/patologia
8.
Pediatr Res ; 89(3): 526-532, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33069166

RESUMO

BACKGROUND: The impact of pediatric chronic kidney disease (pCKD) on the brain remains poorly defined. The objective of this study was to compare brain morphometry between children with early-stage pCKD and typically developing peers using structural magnetic resonance imaging (MRI). METHODS: The sample age range was 6-16 years. A total of 18 children with a diagnosis of pCKD (CKD stages 1-3) due to congenital anomalies of the kidney and urinary tract and 24 typically developing peers were included. Volumetric data from MRI and neurocognitive testing were compared using linear models including pCKD status, age, maternal education level, and socioeconomic status. RESULTS: Cerebellar gray matter volume was significantly smaller in pCKD, t(38) = -2.71, p = 0.01. In contrast, cerebral gray matter volume was increased in pCKD, t(38) = 2.08, p = 0.04. Reduced cerebellum gray matter volume was associated with disease severity, operationalized as estimated glomerular filtration rate (eGFR), t(14) = 2.21, p = 0.04 and predicted lower verbal fluency scores in the pCKD sample. Enlarged cerebral gray matter in the pCKD sample predicted lower scores on mathematics assessment. CONCLUSIONS: This study provides preliminary evidence for a morphometric underpinning to the cognitive deficits observed in pCKD. IMPACT: The impact of pediatric chronic kidney disease (CKD) on the brain remains poorly defined, with no data linking brain morphometry and observed cognitive deficits noted in this population. We explored the relationship between brain morphometry (using structural magnetic resonance imaging), cognition, and markers of CKD. Cerebellar and cerebral gray matter volumes are different in early CKD. Volumetric decreases in cerebellar gray matter are predicted by lower eGFR, suggesting a link between disease and brain morphometry. Reduced cerebellar gray matter predicted lower verbal fluency for those with pCKD. Enlarged cerebral gray matter in the pCKD sample predicted lower mathematics performance.


Assuntos
Substância Cinzenta/patologia , Transtornos Neurocognitivos/etiologia , Insuficiência Renal Crônica/patologia , Adolescente , Cerebelo/patologia , Cérebro/patologia , Criança , Escolaridade , Feminino , Taxa de Filtração Glomerular , Substância Cinzenta/diagnóstico por imagem , Humanos , Rim/anormalidades , Imageamento por Ressonância Magnética , Masculino , Matemática , Mães/educação , Transtornos Neurocognitivos/diagnóstico por imagem , Neuroimagem , Tamanho do Órgão , Projetos Piloto , Insuficiência Renal Crônica/complicações , Classe Social , Distúrbios da Fala/diagnóstico por imagem , Distúrbios da Fala/etiologia , Sistema Urinário/anormalidades
9.
Muscle Nerve ; 61(2): 205-212, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31773755

RESUMO

BACKGROUND: Neurophysiologic biomarkers are needed for clinical trials of therapies for myotonic dystrophy (DM1). We characterized muscle properties, spinal reflexes (H-reflexes), and trans-cortical long-latency reflexes (LLRs) in a cohort with mild/moderate DM1. METHODS: Twenty-four people with DM1 and 25 matched controls underwent assessment of tibial nerve H-reflexes and soleus muscle twitch properties. Quadriceps LLRs were elicited by delivering an unexpected perturbation during a single-limb squat (SLS) visuomotor tracking task. RESULTS: DM1 was associated with decreased H-reflex depression. The efficacy of doublet stimulation was enhanced, yielding an elevated double-single twitch ratio. DM1 participants demonstrated greater error during the SLS task. DM1 individuals with the least-robust LLR responses showed the greatest loss of spinal H-reflex depression. CONCLUSIONS: DM1 is associated with abnormalities of muscle twitch properties. Co-occurring alterations of spinal and trans-cortical reflex properties underscore the central nervous system manifestations of this disorder and may assist in gauging efficacy during clinical trials.


Assuntos
Reflexo H , Distrofia Miotônica/fisiopatologia , Coluna Vertebral/fisiopatologia , Adulto , Estudos de Coortes , Estimulação Elétrica , Eletrodiagnóstico , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Contração Muscular , Músculo Esquelético/inervação , Músculo Esquelético/fisiopatologia , Reflexo Anormal
11.
Pediatr Res ; 80(2): 197-203, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27064239

RESUMO

BACKGROUND: Late preterm birth (34-36 wk gestation) is a common occurrence with potential for altered brain development. METHODS: This observational cohort study compared children at age 6-13 y based on the presence or absence of the historical risk factor of late preterm birth. Children completed a battery of cognitive assessments and underwent magnetic resonance imaging of the brain. RESULTS: Late preterm children (n = 52) demonstrated slower processing speed (P = 0.035) and scored more poorly in visual-spatial perception (P = 0.032) and memory (P = 0.007) than full-term children (n = 74). Parents of late preterm children reported more behavioral difficulty (P = 0.004). There were no group differences in cognitive ability or academic achievement. Imaging revealed similar intracranial volumes but less total tissue and more cerebrospinal fluid (P = 0.004) for late preterm children compared to full-term children. The tissue difference was driven by differences in the cerebrum (P = 0.028) and distributed across cortical (P = 0.051) and subcortical tissue (P = 0.047). Late preterm children had a relatively smaller thalamus (P = 0.012) than full-term children. Only full-term children demonstrated significant decreases in cortical tissue volume (P < 0.001) and thickness (P < 0.001) with age. CONCLUSION: Late preterm birth may affect cognition, behavior, and brain structure well beyond infancy.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Recém-Nascido Prematuro , Adolescente , Antropometria , Criança , Cognição , Transtornos Cognitivos , Estudos de Coortes , Deficiências do Desenvolvimento/etiologia , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Destreza Motora , Tamanho do Órgão , Fatores de Risco
12.
Med Phys ; 50(8): 4916-4929, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36750977

RESUMO

BACKGROUND: Automated segmentation of individual calf muscle compartments in 3D MR images is gaining importance in diagnosing muscle disease, monitoring its progression, and prediction of the disease course. Although deep convolutional neural networks have ushered in a revolution in medical image segmentation, achieving clinically acceptable results is a challenging task and the availability of sufficiently large annotated datasets still limits their applicability. PURPOSE: In this paper, we present a novel approach combing deep learning and graph optimization in the paradigm of assisted annotation for solving general segmentation problems in 3D, 4D, and generally n-D with limited annotation cost. METHODS: Deep LOGISMOS combines deep-learning-based pre-segmentation of objects of interest provided by our convolutional neural network, FilterNet+, and our 3D multi-objects LOGISMOS framework (layered optimal graph image segmentation of multiple objects and surfaces) that uses newly designed trainable machine-learned cost functions. In the paradigm of assisted annotation, multi-object JEI for efficient editing of automated Deep LOGISMOS segmentation was employed to form a new larger training set with significant decrease of manual tracing effort. RESULTS: We have evaluated our method on 350 lower leg (left/right) T1-weighted MR images from 93 subjects (47 healthy, 46 patients with muscular morbidity) by fourfold cross-validation. Compared with the fully manual annotation approach, the annotation cost with assisted annotation is reduced by 95%, from 8 h to 25 min in this study. The experimental results showed average Dice similarity coefficient (DSC) of 96.56 ± 0.26 % $96.56\pm 0.26 \%$ and average absolute surface positioning error of 0.63 pixels (0.44 mm) for the five 3D muscle compartments for each leg. These results significantly improve our previously reported method and outperform the state-of-the-art nnUNet method. CONCLUSIONS: Our proposed approach can not only dramatically reduce the expert's annotation efforts but also significantly improve the segmentation performance compared to the state-of-the-art nnUNet method. The notable performance improvements suggest the clinical-use potential of our new fully automated simultaneous segmentation of calf muscle compartments.


Assuntos
Processamento de Imagem Assistida por Computador , Perna (Membro) , Humanos , Processamento de Imagem Assistida por Computador/métodos , Perna (Membro)/diagnóstico por imagem , Redes Neurais de Computação , Imageamento por Ressonância Magnética/métodos , Músculos/diagnóstico por imagem
13.
Neuromuscul Disord ; 33(8): 660-669, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37419717

RESUMO

Myotonic dystrophy type 1 is characterized by neuromuscular degeneration. Our objective was to compare change in white matter microstructure (fractional anisotropy, radial and axial diffusivity), and functional/clinical measures. Participants underwent yearly neuroimaging and neurocognitive assessments over three-years. Assessments encompassed full-scale intelligence, memory, language, visuospatial skills, attention, processing speed, and executive function, as well as clinical symptoms of muscle/motor function, apathy, and hypersomnolence. Mixed effects models were used to examine differences. 69 healthy adults (66.2% women) and 41 DM1 patients (70.7% women) provided 156 and 90 observations, respectively. There was a group by elapsed time interaction for cerebral white matter, where DM1 patients exhibited declines in white matter (all p<0.05). Likewise, DM1 patients either declined (motor), improved more slowly (intelligence), or remained stable (executive function) for functional outcomes. White matter was associated with functional performance; intelligence was predicted by axial (r = 0.832; p<0.01) and radial diffusivity (r = 0.291, p<0.05), and executive function was associated with anisotropy (r = 0.416, p<0.001), and diffusivity (axial: r = 0.237, p = 0.05 and radial: r = 0.300, p<0.05). Indices of white matter health are sensitive to progression in DM1. These results are important for clinical trial design, which utilize short intervals to establish treatment efficacy.


Assuntos
Distrofia Miotônica , Substância Branca , Humanos , Adulto , Feminino , Masculino , Imagem de Tensor de Difusão , Substância Branca/diagnóstico por imagem , Distrofia Miotônica/complicações , Função Executiva , Anisotropia , Encéfalo/diagnóstico por imagem
14.
Brain ; 134(Pt 1): 137-42, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20923788

RESUMO

Huntington's disease is an autosomal dominant brain disease. Although conceptualized as a neurodegenerative disease of the striatum, a growing number of studies challenge this classic concept of Huntington's disease aetiology. Intracranial volume is the tissue and fluid within the calvarium and is a representation of the maximal brain growth obtained during development. The current study reports intracranial volume obtained from an magnetic resonance imaging brain scan in a sample of subjects (n = 707) who have undergone presymptomatic gene testing. Participants who are gene-expanded but not yet manifesting the disease (prodromal Huntington's disease) are compared with subjects who are non-gene expanded. The prodromal males had significantly smaller intracranial volume measures with a mean volume that was 4% lower compared with controls. Although the prodromal females had smaller intracranial volume measures compared with their controls, this was not significant. The current findings suggest that mutant huntingtin can cause abnormal development, which may contribute to the pathogenesis of Huntington's disease.


Assuntos
Encéfalo/patologia , Doença de Huntington/patologia , Adulto , Idoso , Análise de Variância , Feminino , Humanos , Doença de Huntington/genética , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Repetições de Trinucleotídeos/genética
15.
Brain Behav ; 12(7): e2630, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35604958

RESUMO

INTRODUCTION: We compared neuropsychiatric symptoms between child and adolescent huntingtin gene-mutation carriers and noncarriers. Given previous evidence of atypical striatal development in carriers, we also assessed the relationship between neuropsychiatric traits and striatal development. METHODS: Participants between 6 and 18 years old were recruited from families affected by Huntington's disease and tested for the huntingtin gene expansion. Neuropsychiatric traits were assessed using the Pediatric Behavior Scale and the Behavior Rating Inventory of Executive Function. Striatal volumes were extracted from 3T neuro-anatomical images. Multivariable linear regression models were conducted to evaluate the impact of group (i.e., gene nonexpanded [GNE] or gene expanded [GE]), age, and trajectory of striatal growth on neuropsychiatric symptoms. RESULTS: There were no group differences in any behavioral measure with the exception of depression/anxiety score, which was higher in the GNE group compared to the GE group (estimate = 4.58, t(129) = 2.52, FDR = 0.051). The growth trajectory of striatal volume predicted depression scores (estimate = 0.429, 95% CI 0.15:0.71, p = .0029), where a negative slope of striatal volume over time was associated with lower depression/anxiety. CONCLUSIONS: The current findings show that GE children may have lower depression/anxiety compared to their peers. Previously, we observed a unique pattern of early striatal hypertrophy and continued decrement in volume over time among GE children and adolescents. In contrast, GNE individuals largely show striatal volume growth. These findings suggest that the lower scores of depression and anxiety seen in GE children and adolescents may be associated with differential growth of the striatum.


Assuntos
Doença de Huntington , Adolescente , Ansiedade/genética , Criança , Corpo Estriado/diagnóstico por imagem , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Mutação , Neostriado
16.
J Huntingtons Dis ; 11(2): 173-178, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35275555

RESUMO

BACKGROUND: Molecular studies provide evidence that mutant huntingtin (mHTT) affects early cortical development; however, cortical development has not been evaluated in child and adolescent carriers of mHTT. OBJECTIVE: To evaluate the impact of mHTT on the developmental trajectories of cortical thickness and surface area. METHODS: Children and adolescents (6-18 years) participated in the KidsHD study. mHTT carrier status was determined for research purposes only to classify participants as gene expanded (GE) and gene non-expanded (GNE). Cortical features were extracted from 3T neuroimaging using FreeSurfer. Nonlinear mixed effects models were conducted to determine if age, group, and CAG repeat were associated with cortical morphometry. RESULTS: Age-related changes in cortical morphometry were similar across groups. Expanded CAG repeat was not significantly associated with cortical features. CONCLUSION: While striatal development is markedly different in GE and GNE, developmental change of the cortex appears grossly normal among child and adolescent carrier of mHTT.


Assuntos
Doença de Huntington , Adolescente , Criança , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética
17.
BMC Med Genet ; 12: 101, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21794117

RESUMO

BACKGROUND: Bardet-Biedl syndrome (BBS) is a heterogeneous human disorder inherited in an autosomal recessive pattern, and characterized by the primary findings of obesity, polydactyly, hypogonadism, and learning and behavioural problems. BBS mouse models have a neuroanatomical phenotype consisting of third and lateral ventriculomegaly, thinning of the cerebral cortex, and reduction in the size of the corpus striatum and hippocampus. These abnormalities raise the question of whether humans with BBS have a characteristic morphologic brain phenotype. Further, although behavioral, developmental, neurological and motor defects have been noted in patients with BBS, to date, there are limited reports of brain findings in BBS. The present study represents the largest systematic evaluation for the presence of structural brain malformations and/or progressive changes, which may contribute to these functional problems. METHODS: A case-control study of 21 patients, most aged 13-35 years, except for 2 patients aged 4 and 8 years, who were diagnosed with BBS by clinical criteria and genetic analysis of known BBS genes, and were evaluated by qualitative and volumetric brain MRI scans. Healthy controls were matched 3:1 by age, sex and race. Statistical analysis was performed using SAS language with SAS STAT procedures. RESULTS: All 21 patients with BBS were found to have statistically significant region- and tissue-specific patterns of brain abnormalities. There was 1) normal intracranial volume; 2) reduced white matter in all regions of the brain, but most in the occipital region; 3) preserved gray matter volume, with increased cerebral cortex volume in only the occipital lobe; 4) reduced gray matter in the subcortical regions of the brain, including the caudate, putamen and thalamus, but not in the cerebellum; and 5) increased cerebrospinal fluid volume. CONCLUSIONS: There are distinct and characteristic abnormalities in tissue- and region- specific volumes of the brain in patients with BBS, which parallel the findings, described in BBS mutant mouse models. Some of these brain abnormalities may be progressive and associated with the reported neurological and behavioral problems. Further future correlation of these MRI scan findings with detailed neurologic and neuropsychological exams together with genotype data will provide better understanding of the pathophysiology of BBS.


Assuntos
Síndrome de Bardet-Biedl/diagnóstico , Encéfalo/anormalidades , Imageamento por Ressonância Magnética , Adolescente , Adulto , Síndrome de Bardet-Biedl/genética , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Fatores Sexuais , Adulto Jovem
18.
J Neurol Neurosurg Psychiatry ; 82(4): 405-10, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20884680

RESUMO

OBJECTIVE: As therapeutics are being developed to target the underlying neuropathology of Huntington disease, interest is increasing in methodologies for conducting clinical trials in the prodromal phase. This study was designed to examine the potential utility of structural MRI measures as outcome measures for such trials. METHODS: Data are presented from 211 prodromal individuals and 60 controls, scanned both at baseline and at the 2-year follow-up. Prodromal participants were divided into groups based on proximity to estimated onset of diagnosable clinical disease: far (>15 years from estimated onset), mid (9-15 years) and near (<9 years). Volumetric measurements of caudate, putamen, total striatum, globus pallidus, thalamus, total grey and white matter and cerebrospinal fluid were performed. RESULTS: All prodromal groups showed a faster rate of atrophy than controls in striatum, total brain and cerebral white matter (especially in the frontal lobe). Neither prodromal participants nor controls showed any significant longitudinal change in cortex (either total cortical grey or within individual lobes). When normal age-related atrophy (ie, change observed in the control group) was taken into account, there was more statistically significant disease-related atrophy in white matter than in striatum. CONCLUSION: Measures of volume change in striatum and white-matter volume, particularly in the frontal lobe, may serve as excellent outcome measures for future clinical trials in prodromal Huntington disease. Clinical trials using white matter or striatal volume change as an outcome measure will be most efficient if the sample is restricted to individuals who are within 15 years of estimated onset of diagnosable disease.


Assuntos
Encéfalo/patologia , Progressão da Doença , Doença de Huntington/patologia , Adulto , Atrofia/patologia , Feminino , Humanos , Doença de Huntington/diagnóstico , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Fibras Nervosas Mielinizadas/patologia , Fibras Nervosas Amielínicas/patologia , Fatores de Tempo
19.
Neurology ; 96(19): e2407-e2413, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33692166

RESUMO

OBJECTIVE: To investigate the relationships between CAG repeat length in the huntingtin gene and cognitive performance in participants above and below the disease threshold for Huntington disease (HD), we performed a cross-sectional analysis of the Enroll-HD database. METHODS: We analyzed data from young, developing adults (≤30 years of age) without a history of depression, apathy, or cognitive deficits. We included participants with and without the gene expansion (CAG ≥36) for HD. All participants had to have a Total Functional Capacity Score of 13, a diagnostic confidence level of zero, and a total motor score of <10 and had to be >28.6 years from their predicted motor onset. We performed regression analyses to investigate the nonlinear relationship between CAG repeat length and various cognitive measures controlling for age, sex, and education level. RESULTS: There were significant positive relationships between CAG repeat length and the Symbol Digit Modalities, Stroop Color Naming, and Stroop Interference test scores. There were significant negative relationships between CAG repeat length and scores on Parts A and B of the Trails Making Test (p < 0.05), indicating that longer CAG repeat lengths were associated with better performance. DISCUSSION: An increasing number of CAG repeats in the huntingtin gene below disease threshold and low pathologic CAG ranges were associated with some improvements in cognitive performance. These findings outline the relationship between CAG repeats within the huntingtin gene and cognitive development. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that CAG repeat length is positively associated with cognitive function across a spectrum of CAG repeat lengths.


Assuntos
Cognição/fisiologia , Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/psicologia , Expansão das Repetições de Trinucleotídeos/genética , Adolescente , Adulto , Estudos Transversais , Bases de Dados Genéticas , Feminino , Humanos , Doença de Huntington/diagnóstico , Masculino , Adulto Jovem
20.
Neurol Genet ; 7(1): e537, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33575482

RESUMO

OBJECTIVE: Myotonic dystrophy is a multisystem disorder caused by a trinucleotide repeat expansion on the myotonic dystrophy protein kinase (DMPK) gene. To determine whether wildtype DMPK expression patterns vary as a function of age, we analyzed DMPK expression in the brain from 99 donors ranging from 5 postconceptional weeks to 80 years old. METHODS: We used the BrainSpan messenger RNA sequencing and the Yale Microarray data sets, which included brain tissue samples from 42 and 57 donors, respectively. Collectively, donors ranged in age from 5 postconceptional weeks to 80 years old. DMPK expression was normalized for each donor across regions available in both data sets. Restricted cubic spline linear regression models were used to analyze the effects of log-transformed age and sex on normalized DMPK expression data. RESULTS: Age was a statistically significant predictor of normalized DMPK expression pattern in the human brain in the BrainSpan (p < 0.005) and Yale data sets (p < 0.005). Sex was not a significant predictor. Across both data sets, normalized wildtype DMPK expression steadily increases during fetal development, peaks around birth, and then declines to reach a nadir around age 10. CONCLUSIONS: Peak expression of DMPK coincides with a time of dynamic brain development. Abnormal brain DMPK expression due to myotonic dystrophy may have implications for early brain development.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa