Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 180(1): 33-49.e22, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31813624

RESUMO

Gut-innervating nociceptor sensory neurons respond to noxious stimuli by initiating protective responses including pain and inflammation; however, their role in enteric infections is unclear. Here, we find that nociceptor neurons critically mediate host defense against the bacterial pathogen Salmonella enterica serovar Typhimurium (STm). Dorsal root ganglia nociceptors protect against STm colonization, invasion, and dissemination from the gut. Nociceptors regulate the density of microfold (M) cells in ileum Peyer's patch (PP) follicle-associated epithelia (FAE) to limit entry points for STm invasion. Downstream of M cells, nociceptors maintain levels of segmentous filamentous bacteria (SFB), a gut microbe residing on ileum villi and PP FAE that mediates resistance to STm infection. TRPV1+ nociceptors directly respond to STm by releasing calcitonin gene-related peptide (CGRP), a neuropeptide that modulates M cells and SFB levels to protect against Salmonella infection. These findings reveal a major role for nociceptor neurons in sensing and defending against enteric pathogens.


Assuntos
Microbioma Gastrointestinal/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Nociceptores/fisiologia , Animais , Epitélio/metabolismo , Feminino , Gânglios Espinais/metabolismo , Gânglios Espinais/microbiologia , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nociceptores/metabolismo , Nódulos Linfáticos Agregados/inervação , Nódulos Linfáticos Agregados/metabolismo , Infecções por Salmonella/metabolismo , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidade , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia
2.
Blood Adv ; 7(24): 7445-7456, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38091008

RESUMO

Somatic UBA1 mutations in hematopoietic cells are a hallmark of Vacuoles, E1 enzyme, X-linked, Autoinflammatory, Somatic (VEXAS) syndrome, which is a late-onset inflammatory disease associated with bone marrow failure and high mortality. The majority of UBA1 mutations in VEXAS syndrome comprise hemizygous mutations affecting methionine-41 (M41), leading to the expression of UBA1M41T, UBA1M41V, or UBA1M41L and globally reduced protein polyubiquitination. Here, we used CRISPR-Cas9 to engineer isogenic 32D mouse myeloid cell lines expressing hemizygous Uba1WT or Uba1M41L from the endogenous locus. Consistent with prior analyses of patients with VEXAS syndrome samples, hemizygous Uba1M41L expression was associated with loss of the UBA1b protein isoform, gain of the UBA1c protein isoform, reduced polyubiquitination, abnormal cytoplasmic vacuoles, and increased production of interleukin-1ß and inflammatory chemokines. Vacuoles in Uba1M41L cells contained a variety of endolysosomal membranes, including small vesicles, multivesicular bodies, and multilamellar lysosomes. Uba1M41L cells were more sensitive to the UBA1 inhibitor TAK243. TAK243 treatment promoted apoptosis in Uba1M41L cells and led to preferential loss of Uba1M41L cells in competition assays with Uba1WT cells. Knock-in of a TAK243-binding mutation, Uba1A580S, conferred TAK243 resistance. In addition, overexpression of catalytically active UBA1b in Uba1M41L cells restored polyubiquitination and increased TAK243 resistance. Altogether, these data indicate that loss of UBA1b underlies a key biochemical phenotype associated with VEXAS syndrome and renders cells with reduced UBA1 activity vulnerable to targeted UBA1 inhibition. Our Uba1M41L knock-in cell line is a useful model of VEXAS syndrome that will aid in the study of disease pathogenesis and the development of effective therapies.


Assuntos
Células Mieloides , Células Progenitoras Mieloides , Animais , Camundongos , Humanos , Lisossomos , Isoformas de Proteínas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa