Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 36(1): 53-65, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36534483

RESUMO

Receptor-mediated molecular initiating events (MIEs) and their relevance in endocrine activity (EA) have been highlighted in literature. More than 15 receptors have been associated with neurodevelopmental adversity and metabolic disruption. MIEs describe chemical interactions with defined biological outcomes, a relationship that could be described with quantitative structure-activity relationship (QSAR) models. QSAR uncertainty can be assessed using the conformal prediction (CP) framework, which provides similarity (i.e., nonconformity) scores relative to the defined classes per prediction. CP calibration can indirectly mitigate data imbalance during model development, and the nonconformity scores serve as intrinsic measures of chemical applicability domain assessment during screening. The focus of this work was to propose an in silico predictive strategy for EA. First, 23 QSAR models for MIEs associated with EA were developed using high-throughput data for 14 receptors. To handle the data imbalance, five protocols were compared, and CP provided the most balanced class definition. Second, the developed QSAR models were applied to a large data set (∼55,000 chemicals), comprising chemicals representative of potential risk for human exposure. Using CP, it was possible to assess the uncertainty of the screening results and identify model strengths and out of domain chemicals. Last, two clustering methods, t-distributed stochastic neighbor embedding and Tanimoto similarity, were used to identify compounds with potential EA using known endocrine disruptors as reference. The cluster overlap between methods produced 23 chemicals with suspected or demonstrated EA potential. The presented models could be utilized for first-tier screening and identification of compounds with potential biological activity across the studied MIEs.


Assuntos
Disruptores Endócrinos , Substâncias Perigosas , Humanos , Substâncias Perigosas/toxicidade , Relação Quantitativa Estrutura-Atividade , Conformação Molecular , Disruptores Endócrinos/toxicidade
2.
J Chem Inf Model ; 63(17): 5433-5445, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37616385

RESUMO

Oxidative stress is the consequence of an abnormal increase of reactive oxygen species (ROS). ROS are generated mainly during the metabolism in both normal and pathological conditions as well as from exposure to xenobiotics. Xenobiotics can, on the one hand, disrupt molecular machinery involved in redox processes and, on the other hand, reduce the effectiveness of the antioxidant activity. Such dysregulation may lead to oxidative damage when combined with oxidative stress overpassing the cell capacity to detoxify ROS. In this work, a green fluorescent protein (GFP)-tagged nuclear factor erythroid 2-related factor 2 (NRF2)-regulated sulfiredoxin reporter (Srxn1-GFP) was used to measure the antioxidant response of HepG2 cells to a large series of drug and drug-like compounds (2230 compounds). These compounds were then classified as positive or negative depending on cellular response and distributed among different modeling groups to establish structure-activity relationship (SAR) models. A selection of models was used to prospectively predict oxidative stress induced by a new set of compounds subsequently experimentally tested to validate the model predictions. Altogether, this exercise exemplifies the different challenges of developing SAR models of a phenotypic cellular readout, model combination, chemical space selection, and results interpretation.


Assuntos
Estresse Oxidativo , Xenobióticos , Humanos , Espécies Reativas de Oxigênio , Células Hep G2 , Estudos Prospectivos , Relação Estrutura-Atividade
3.
Altern Lab Anim ; 51(3): 204-209, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37184299

RESUMO

An in silico method has been developed that permits the binary differentiation between pure liquids causing serious eye damage or eye irritation, and pure liquids with no need for such classification, according to the UN GHS system. The method is based on the finding that the Hansen Solubility Parameters (HSP) of a liquid are collectively important predictors for eye irritation. Thus, by applying a two-tier approach in which in silico-predicted pKa values (firstly) and a trained model based solely on in silico-predicted HSP data (secondly) were used, we have developed, and validated, a fully in silico approach for predicting the outcome of a Draize test (in terms of UN GHS Cat. 1/Cat. 2A/Cat. 2B or UN GHS No Cat.) with high validation set performance (sensitivity = 0.846, specificity = 0.818, balanced accuracy = 0.832) using SMILES only. The method is applicable to pure non-ionic liquids with molecular weight below 500 g/mol, fewer than six hydrogen bond donors (e.g. nitrogen-hydrogen or oxygen-hydrogen bonds) and fewer than eleven hydrogen bond acceptors (e.g. nitrogen or oxygen atoms). Due to its fully in silico characteristics, this method can be applied to pure liquids that are still at the desktop design stage and not yet in production.


Assuntos
Olho , Testes de Toxicidade , Animais , Solubilidade , Irritantes/toxicidade , Alternativas aos Testes com Animais
4.
J Chem Inf Model ; 62(24): 6323-6335, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-35274943

RESUMO

Integration of statistical learning methods with structure-based modeling approaches is a contemporary strategy to identify novel lead compounds in drug discovery. Hepatic organic anion transporting polypeptides (OATP1B1, OATP1B3, and OATP2B1) are classical off-targets, and it is well recognized that their ability to interfere with a wide range of chemically unrelated drugs, environmental chemicals, or food additives can lead to unwanted adverse effects like liver toxicity and drug-drug or drug-food interactions. Therefore, the identification of novel (tool) compounds for hepatic OATPs by virtual screening approaches and subsequent experimental validation is a major asset for elucidating structure-function relationships of (related) transporters: they enhance our understanding about molecular determinants and structural aspects of hepatic OATPs driving ligand binding and selectivity. In the present study, we performed a consensus virtual screening approach by using different types of machine learning models (proteochemometric models, conformal prediction models, and XGBoost models for hepatic OATPs), followed by molecular docking of preselected hits using previously established structural models for hepatic OATPs. Screening the diverse REAL drug-like set (Enamine) shows a comparable hit rate for OATP1B1 (36% actives) and OATP1B3 (32% actives), while the hit rate for OATP2B1 was even higher (66% actives). Percentage inhibition values for 44 selected compounds were determined using dedicated in vitro assays and guided the prioritization of several highly potent novel hepatic OATP inhibitors: six (strong) OATP2B1 inhibitors (IC50 values ranging from 0.04 to 6 µM), three OATP1B1 inhibitors (2.69 to 10 µM), and five OATP1B3 inhibitors (1.53 to 10 µM) were identified. Strikingly, two novel OATP2B1 inhibitors were uncovered (C7 and H5) which show high affinity (IC50 values: 40 nM and 390 nM) comparable to the recently described estrone-based inhibitor (IC50 = 41 nM). A molecularly detailed explanation for the observed differences in ligand binding to the three transporters is given by means of structural comparison of the detected binding sites and docking poses.


Assuntos
Transportadores de Ânions Orgânicos , Transportadores de Ânions Orgânicos/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Simulação de Acoplamento Molecular , Ligantes , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo , Transporte Biológico/fisiologia , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Peptídeos/metabolismo , Interações Medicamentosas
5.
Environ Sci Technol ; 56(12): 8363-8372, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35561338

RESUMO

Data on toxic effects are at large missing the prevailing understanding of the risks of industrial chemicals. Thyroid hormone (TH) system disruption includes interferences of the life cycle of the thyroid hormones and may occur in various organs. In the current study, high-throughput screening data available for 14 putative molecular initiating events of adverse outcome pathways, related to disruption of the TH system, were used to develop 19 in silico models for identification of potential thyroid hormone system-disrupting chemicals. The conformal prediction framework with the underlying Random Forest was used as a wrapper for the models allowing for setting the desired confidence level and controlling the error rate of predictions. The trained models were then applied to two different databases: (i) an in-house database comprising xenobiotics identified in human blood and ii) currently used chemicals registered in the Swedish Product Register, which have been predicted to have a high exposure index to consumers. The application of these models showed that among currently used chemicals, fewer were overall predicted as active compared to chemicals identified in human blood. Chemicals of specific concern for TH disruption were identified from both databases based on their predicted activity.


Assuntos
Disruptores Endócrinos , Simulação por Computador , Disruptores Endócrinos/toxicidade , Ensaios de Triagem em Larga Escala , Humanos , Hormônios Tireóideos/metabolismo , Xenobióticos
6.
Molecules ; 28(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36615411

RESUMO

Molecular structure property modeling is an increasingly important tool for predicting compounds with desired properties due to the expensive and resource-intensive nature and the problem of toxicity-related attrition in late phases during drug discovery and development. Lately, the interest for applying deep learning techniques has increased considerably. This investigation compares the traditional physico-chemical descriptor and machine learning-based approaches through autoencoder generated descriptors to two different descriptor-free, Simplified Molecular Input Line Entry System (SMILES) based, deep learning architectures of Bidirectional Encoder Representations from Transformers (BERT) type using the Mondrian aggregated conformal prediction method as overarching framework. The results show for the binary CATMoS non-toxic and very-toxic datasets that for the former, almost equally balanced, dataset all methods perform equally well while for the latter dataset, with an 11-fold difference between the two classes, the MolBERT model based on a large pre-trained network performs somewhat better compared to the rest with high efficiency for both classes (0.93-0.94) as well as high values for sensitivity, specificity and balanced accuracy (0.86-0.87). The descriptor-free, SMILES-based, deep learning BERT architectures seem capable of producing well-balanced predictive models with defined applicability domains. This work also demonstrates that the class imbalance problem is gracefully handled through the use of Mondrian conformal prediction without the use of over- and/or under-sampling, weighting of classes or cost-sensitive methods.


Assuntos
Aprendizado Profundo , Aprendizado de Máquina , Estrutura Molecular , Descoberta de Drogas/métodos
7.
Chem Res Toxicol ; 34(2): 656-668, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33347274

RESUMO

Hepatic steatosis (fatty liver) is a severe liver disease induced by the excessive accumulation of fatty acids in hepatocytes. In this study, we developed reliable in silico models for predicting hepatic steatosis on the basis of an in vivo data set of 1041 compounds measured in rodent studies with repeated oral exposure. The imbalanced nature of the data set (1:8, with the "steatotic" compounds belonging to the minority class) required the use of meta-classifiers-bagging with stratified under-sampling and Mondrian conformal prediction-on top of the base classifier random forest. One major goal was the investigation of the influence of different descriptor combinations on model performance (tested by predicting an external validation set): physicochemical descriptors (RDKit), ToxPrint features, as well as predictions from in silico nuclear receptor and transporter models. All models based upon descriptor combinations including physicochemical features led to reasonable balanced accuracies (BAs between 0.65 and 0.69 for the respective models). Combining physicochemical features with transporter predictions and further with ToxPrint features gave the best performing model (BAs up to 0.7 and efficiencies of 0.82). Whereas both meta-classifiers proved useful for this highly imbalanced toxicity data set, the conformal prediction framework also guarantees the error level and thus might be favored for future studies in the field of predictive toxicology.


Assuntos
Simulação por Computador , Fígado Gorduroso/induzido quimicamente , Hidrocarbonetos Acíclicos/efeitos adversos , Hidrocarbonetos Aromáticos/efeitos adversos , Aprendizado de Máquina , Bases de Dados Factuais , Humanos , Modelos Moleculares , Conformação Molecular
8.
Chem Res Toxicol ; 34(2): 330-344, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33295759

RESUMO

Skin sensitization potential or potency is an important end point in the safety assessment of new chemicals and new chemical mixtures. Formerly, animal experiments such as the local lymph node assay (LLNA) were the main form of assessment. Today, however, the focus lies on the development of nonanimal testing approaches (i.e., in vitro and in chemico assays) and computational models. In this work, we investigate, based on publicly available LLNA data, the ability of aggregated, Mondrian conformal prediction classifiers to differentiate between non- sensitizing and sensitizing compounds as well as between two levels of skin sensitization potential (weak to moderate sensitizers, and strong to extreme sensitizers). The advantage of the conformal prediction framework over other modeling approaches is that it assigns compounds to activity classes only if a defined minimum level of confidence is reached for the individual predictions. This eliminates the need for applicability domain criteria that often are arbitrary in their nature and less flexible. Our new binary classifier, named Skin Doctor CP, differentiates nonsensitizers from sensitizers with a higher reliability-to-efficiency ratio than the corresponding nonconformal prediction workflow that we presented earlier. When tested on a set of 257 compounds at the significance levels of 0.10 and 0.30, the model reached an efficiency of 0.49 and 0.92, and an accuracy of 0.83 and 0.75, respectively. In addition, we developed a ternary classification workflow to differentiate nonsensitizers, weak to moderate sensitizers, and strong to extreme sensitizers. Although this model achieved satisfactory overall performance (accuracies of 0.90 and 0.73, and efficiencies of 0.42 and 0.90, at significance levels 0.10 and 0.30, respectively), it did not obtain satisfying class-wise results (at a significance level of 0.30, the validities obtained for nonsensitizers, weak to moderate sensitizers, and strong to extreme sensitizers were 0.70, 0.58, and 0.63, respectively). We argue that the model is, in consequence, unable to reliably identify strong to extreme sensitizers and suggest that other ternary models derived from the currently accessible LLNA data might suffer from the same problem. Skin Doctor CP is available via a public web service at https://nerdd.zbh.uni-hamburg.de/skinDoctorII/.


Assuntos
Compostos Orgânicos/farmacologia , Testes Cutâneos , Pele/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Bases de Dados Factuais , Ensaio Local de Linfonodo , Camundongos , Estrutura Molecular , Compostos Orgânicos/química , Bibliotecas de Moléculas Pequenas/química
9.
J Chem Inf Model ; 61(6): 2648-2657, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34043352

RESUMO

Predictive modeling for toxicity can help reduce risks in a range of applications and potentially serve as the basis for regulatory decisions. However, the utility of these predictions can be limited if the associated uncertainty is not adequately quantified. With recent studies showing great promise for deep learning-based models also for toxicity predictions, we investigate the combination of deep learning-based predictors with the conformal prediction framework to generate highly predictive models with well-defined uncertainties. We use a range of deep feedforward neural networks and graph neural networks in a conformal prediction setting and evaluate their performance on data from the Tox21 challenge. We also compare the results from the conformal predictors to those of the underlying machine learning models. The results indicate that highly predictive models can be obtained that result in very efficient conformal predictors even at high confidence levels. Taken together, our results highlight the utility of conformal predictors as a convenient way to deliver toxicity predictions with confidence, adding both statistical guarantees on the model performance as well as better predictions of the minority class compared to the underlying models.


Assuntos
Aprendizado Profundo , Humanos , Aprendizado de Máquina , Conformação Molecular , Redes Neurais de Computação , Incerteza
10.
J Chem Inf Model ; 61(7): 3255-3272, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34153183

RESUMO

Computational methods such as machine learning approaches have a strong track record of success in predicting the outcomes of in vitro assays. In contrast, their ability to predict in vivo endpoints is more limited due to the high number of parameters and processes that may influence the outcome. Recent studies have shown that the combination of chemical and biological data can yield better models for in vivo endpoints. The ChemBioSim approach presented in this work aims to enhance the performance of conformal prediction models for in vivo endpoints by combining chemical information with (predicted) bioactivity assay outcomes. Three in vivo toxicological endpoints, capturing genotoxic (MNT), hepatic (DILI), and cardiological (DICC) issues, were selected for this study due to their high relevance for the registration and authorization of new compounds. Since the sparsity of available biological assay data is challenging for predictive modeling, predicted bioactivity descriptors were introduced instead. Thus, a machine learning model for each of the 373 collected biological assays was trained and applied on the compounds of the in vivo toxicity data sets. Besides the chemical descriptors (molecular fingerprints and physicochemical properties), these predicted bioactivities served as descriptors for the models of the three in vivo endpoints. For this study, a workflow based on a conformal prediction framework (a method for confidence estimation) built on random forest models was developed. Furthermore, the most relevant chemical and bioactivity descriptors for each in vivo endpoint were preselected with lasso models. The incorporation of bioactivity descriptors increased the mean F1 scores of the MNT model from 0.61 to 0.70 and for the DICC model from 0.72 to 0.82 while the mean efficiencies increased by roughly 0.10 for both endpoints. In contrast, for the DILI endpoint, no significant improvement in model performance was observed. Besides pure performance improvements, an analysis of the most important bioactivity features allowed detection of novel and less intuitive relationships between the predicted biological assay outcomes used as descriptors and the in vivo endpoints. This study presents how the prediction of in vivo toxicity endpoints can be improved by the incorporation of biological information-which is not necessarily captured by chemical descriptors-in an automated workflow without the need for adding experimental workload for the generation of bioactivity descriptors as predicted outcomes of bioactivity assays were utilized. All bioactivity CP models for deriving the predicted bioactivities, as well as the in vivo toxicity CP models, can be freely downloaded from https://doi.org/10.5281/zenodo.4761225.


Assuntos
Fígado , Aprendizado de Máquina , Bioensaio , Conformação Molecular
11.
J Chem Inf Model ; 60(6): 2830-2837, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32374618

RESUMO

Predictive modeling is a cornerstone in early drug development. Using information for multiple domains or across prediction tasks has the potential to improve the performance of predictive modeling. However, aggregating data often leads to incomplete data matrices that might be limiting for modeling. In line with previous studies, we show that by generating predicted bioactivity profiles, and using these as additional features, prediction accuracy of biological endpoints can be improved. Using conformal prediction, a type of confidence predictor, we present a robust framework for the calculation of these profiles and the evaluation of their impact. We report on the outcomes from several approaches to generate the predicted profiles on 16 datasets in cytotoxicity and bioactivity and show that efficiency is improved the most when including the p-values from conformal prediction as bioactivity profiles.


Assuntos
Conformação Molecular
12.
Mutagenesis ; 34(1): 33-40, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30541036

RESUMO

Valid and predictive models for classifying Ames mutagenicity have been developed using conformal prediction. The models are Random Forest models using signature molecular descriptors. The investigation indicates, on excluding not-strongly mutagenic compounds (class B), that the validity for mutagenic compounds is increased for the predictions based on both public and the Division of Genetics and Mutagenesis, National Institute of Health Sciences of Japan (DGM/NIHS) data while less so when using only the latter data source. The former models only result in valid predictions for the majority, non-mutagenic, class whereas the latter models are valid for both classes, i.e. mutagenic and non-mutagenic compounds. These results demonstrate the importance of data consistency manifested through the superior predictive quality and validity of the models based only on DGM/NIHS generated data compared to a combination of this data with public data sources.


Assuntos
Testes de Mutagenicidade/tendências , Mutagênicos/toxicidade , Relação Quantitativa Estrutura-Atividade , Simulação por Computador , Japão , Mutagênese/genética
13.
Mutagenesis ; 34(1): 3-16, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30357358

RESUMO

The International Conference on Harmonization (ICH) M7 guideline allows the use of in silico approaches for predicting Ames mutagenicity for the initial assessment of impurities in pharmaceuticals. This is the first international guideline that addresses the use of quantitative structure-activity relationship (QSAR) models in lieu of actual toxicological studies for human health assessment. Therefore, QSAR models for Ames mutagenicity now require higher predictive power for identifying mutagenic chemicals. To increase the predictive power of QSAR models, larger experimental datasets from reliable sources are required. The Division of Genetics and Mutagenesis, National Institute of Health Sciences (DGM/NIHS) of Japan recently established a unique proprietary Ames mutagenicity database containing 12140 new chemicals that have not been previously used for developing QSAR models. The DGM/NIHS provided this Ames database to QSAR vendors to validate and improve their QSAR tools. The Ames/QSAR International Challenge Project was initiated in 2014 with 12 QSAR vendors testing 17 QSAR tools against these compounds in three phases. We now present the final results. All tools were considerably improved by participation in this project. Most tools achieved >50% sensitivity (positive prediction among all Ames positives) and predictive power (accuracy) was as high as 80%, almost equivalent to the inter-laboratory reproducibility of Ames tests. To further increase the predictive power of QSAR tools, accumulation of additional Ames test data is required as well as re-evaluation of some previous Ames test results. Indeed, some Ames-positive or Ames-negative chemicals may have previously been incorrectly classified because of methodological weakness, resulting in false-positive or false-negative predictions by QSAR tools. These incorrect data hamper prediction and are a source of noise in the development of QSAR models. It is thus essential to establish a large benchmark database consisting only of well-validated Ames test results to build more accurate QSAR models.


Assuntos
Mutagênese/efeitos dos fármacos , Mutagênicos/toxicidade , Relação Quantitativa Estrutura-Atividade , Simulação por Computador , Bases de Dados Factuais , Humanos , Japão , Testes de Mutagenicidade
14.
J Chem Inf Model ; 59(4): 1598-1604, 2019 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-30908915

RESUMO

Multitask prediction of bioactivities is often faced with challenges relating to the sparsity of data and imbalance between different labels. We propose class conditional (Mondrian) conformal predictors using underlying Macau models as a novel approach for large scale bioactivity prediction. This approach handles both high degrees of missing data and label imbalances while still producing high quality predictive models. When applied to ten assay end points from PubChem, the models generated valid models with an efficiency of 74.0-80.1% at the 80% confidence level with similar performance both for the minority and majority class. Also when deleting progressively larger portions of the available data (0-80%) the performance of the models remained robust with only minor deterioration (reduction in efficiency between 5 and 10%). Compared to using Macau without conformal prediction the method presented here significantly improves the performance on imbalanced data sets.


Assuntos
Simulação por Computador , Informática/métodos , Bases de Dados de Compostos Químicos
15.
J Chem Inf Model ; 59(10): 4150-4158, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31560206

RESUMO

Machine learning algorithms have attained widespread use in assessing the potential toxicities of pharmaceuticals and industrial chemicals because of their faster speed and lower cost compared to experimental bioassays. Gradient boosting is an effective algorithm that often achieves high predictivity, but historically the relative long computational time limited its applications in predicting large compound libraries or developing in silico predictive models that require frequent retraining. LightGBM, a recent improvement of the gradient boosting algorithm, inherited its high predictivity but resolved its scalability and long computational time by adopting a leaf-wise tree growth strategy and introducing novel techniques. In this study, we compared the predictive performance and the computational time of LightGBM to deep neural networks, random forests, support vector machines, and XGBoost. All algorithms were rigorously evaluated on publicly available Tox21 and mutagenicity data sets using a Bayesian optimization integrated nested 10-fold cross-validation scheme that performs hyperparameter optimization while examining model generalizability and transferability to new data. The evaluation results demonstrated that LightGBM is an effective and highly scalable algorithm offering the best predictive performance while consuming significantly shorter computational time than the other investigated algorithms across all Tox21 and mutagenicity data sets. We recommend LightGBM for applications of in silico safety assessment and also other areas of cheminformatics to fulfill the ever-growing demand for accurate and rapid prediction of various toxicity or activity related end points of large compound libraries present in the pharmaceutical and chemical industry.


Assuntos
Algoritmos , Desenvolvimento de Medicamentos/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Aprendizado de Máquina , Conjuntos de Dados como Assunto , Estrutura Molecular , Mutagênicos , Reprodutibilidade dos Testes , Software
16.
Arch Toxicol ; 93(12): 3643-3667, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31781791

RESUMO

Read-across is one of the most frequently used alternative tools for hazard assessment, in particular for complex endpoints such as repeated dose or developmental and reproductive toxicity. Read-across extrapolates the outcome of a specific toxicological in vivo endpoint from tested (source) compounds to "similar" (target) compound(s). If appropriately applied, a read-across approach can be used instead of de novo animal testing. The read-across approach starts with structural/physicochemical similarity between target and source compounds, assuming that similar structural characteristics lead to similar human hazards. In addition, similarity also has to be shown for the toxicokinetic and toxicodynamic properties of the grouped compounds. To date, many read-across cases fail to demonstrate toxicokinetic and toxicodynamic similarities. New concepts, in vitro and in silico tools are needed to better characterise these properties, collectively called new approach methodologies (NAMs). This white paper outlines a general read-across assessment concept using NAMs to support hazard characterization of the grouped compounds by generating data on their dynamic and kinetic properties. Based on the overarching read-across hypothesis, the read-across workflow suggests targeted or untargeted NAM testing also outlining how mechanistic knowledge such as adverse outcome pathways (AOPs) can be utilized. Toxicokinetic models (biokinetic and PBPK), enriched by in vitro parameters such as plasma protein binding and hepatocellular clearance, are proposed to show (dis)similarity of target and source compound toxicokinetics. Furthermore, in vitro to in vivo extrapolation is proposed to predict a human equivalent dose, as potential point of departure for risk assessment. Finally, the generated NAM data are anchored to the existing in vivo data of source compounds to predict the hazard of the target compound in a qualitative and/or quantitative manner. To build this EU-ToxRisk read-across concept, case studies have been conducted and discussed with the regulatory community. These case studies are briefly outlined.


Assuntos
Modelos Teóricos , Medição de Risco/métodos , Toxicologia/métodos , Rotas de Resultados Adversos , Animais , Simulação por Computador , Substâncias Perigosas , Humanos , Terminologia como Assunto , Testes de Toxicidade , Toxicocinética , Fluxo de Trabalho
17.
Int J Mol Sci ; 20(23)2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31779113

RESUMO

Drugs that accumulate in lysosomes reach very high tissue concentrations, which is evident in the high volume of distribution and often lower clearance of these compounds. Such a pharmacokinetic profile is beneficial for indications where high tissue penetration and a less frequent dosing regime is required. Here, we show how the level of lysosomotropic accumulation in cells can be predicted solely from molecular structure. To develop quantitative structure-activity relationship (QSAR) models, we used cellular accumulation data for 69 lysosomotropic macrocycles, the pharmaceutical class for which this type of prediction model is extremely valuable due to the importance of cellular accumulation for their anti-infective and anti-inflammatory applications as well as due to the fact that they are extremely difficult to model by computational methods because of their large size (Mw > 500). For the first time, we show that five levels of intracellular lysosomotropic accumulation (as measured by liquid chromatography coupled to tandem mass spectrometry-LC-MS/MS), from low/no to extremely high, can be predicted with 60% balanced accuracy solely from the compound's structure. Although largely built on macrocycles, the eight non-macrocyclic compounds that were added to the set were found to be well incorporated by the models, indicating their possible broader application. By uncovering the link between the molecular structure and cellular accumulation as the key process in tissue distribution of lysosomotropic compounds, these models are applicable for directing the drug discovery process and prioritizing the compounds for synthesis with fine-tuned accumulation properties, according to the desired pharmacokinetic profile.


Assuntos
Biologia Computacional/métodos , Lisossomos/química , Compostos Macrocíclicos/farmacocinética , Cromatografia Líquida , Compostos Macrocíclicos/química , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade , Espectrometria de Massas em Tandem , Distribuição Tecidual
18.
Mol Pharmacol ; 94(4): 1220-1231, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30115672

RESUMO

Recent meta-analyses found an association between prenatal exposure to the antidepressant fluoxetine (FLX) and an increased risk of autism in children. This developmental disorder has been related to dysfunctions in the brains' rewards circuitry, which, in turn, has been linked to dysfunctions in dopaminergic (DA) signaling. The present study investigated if FLX affects processes involved in dopaminergic neuronal differentiation. Mouse neuronal precursors were differentiated into midbrain dopaminergic precursor cells (mDPCs) and concomitantly exposed to clinically relevant doses of FLX. Subsequently, dopaminergic precursors were evaluated for expression of differentiation and stemness markers using quantitative polymerase chain reaction. FLX treatment led to increases in early regional specification markers orthodenticle homeobox 2 (Otx2) and homeobox engrailed-1 and -2 (En1 and En2). On the other hand, two transcription factors essential for midbrain dopaminergic (mDA) neurogenesis, LIM homeobox transcription factor 1 α (Lmx1a) and paired-like homeodomain transcription factor 3 (Pitx3) were downregulated by FLX treatment. The stemness marker nestin (Nes) was increased, whereas the neuronal differentiation marker ß3-tubulin (Tubb3) decreased. Additionally, we observed that FLX modulates the expression of several genes associated with autism spectrum disorder and downregulates the estrogen receptors (ERs) α and ß Further investigations using ERß knockout (BERKO) mDPCs showed that FLX had no or even opposite effects on several of the genes analyzed. These findings suggest that FLX affects differentiation of the dopaminergic system by increasing production of dopaminergic precursors, yet decreasing their maturation, partly via interference with the estrogen system.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Fluoxetina/farmacologia , Mesencéfalo/efeitos dos fármacos , Animais , Transtorno do Espectro Autista/metabolismo , Células Cultivadas , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Regulação para Baixo/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Homeodomínio/metabolismo , Mesencéfalo/metabolismo , Camundongos , Neurogênese/efeitos dos fármacos , Fatores de Transcrição Otx/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Tubulina (Proteína)/metabolismo
19.
Nat Chem Biol ; 12(12): 1065-1074, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27748751

RESUMO

Macrocycles are of increasing interest as chemical probes and drugs for intractable targets like protein-protein interactions, but the determinants of their cell permeability and oral absorption are poorly understood. To enable rational design of cell-permeable macrocycles, we generated an extensive data set under consistent experimental conditions for more than 200 non-peptidic, de novo-designed macrocycles from the Broad Institute's diversity-oriented screening collection. This revealed how specific functional groups, substituents and molecular properties impact cell permeability. Analysis of energy-minimized structures for stereo- and regioisomeric sets provided fundamental insight into how dynamic, intramolecular interactions in the 3D conformations of macrocycles may be linked to physicochemical properties and permeability. Combined use of quantitative structure-permeability modeling and the procedure for conformational analysis now, for the first time, provides chemists with a rational approach to design cell-permeable non-peptidic macrocycles with potential for oral absorption.


Assuntos
Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacocinética , Células CACO-2 , Humanos , Estrutura Molecular , Permeabilidade , Estereoisomerismo , Relação Estrutura-Atividade
20.
J Chem Inf Model ; 58(5): 1132-1140, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29701973

RESUMO

Making predictions with an associated confidence is highly desirable as it facilitates decision making and resource prioritization. Conformal regression is a machine learning framework that allows the user to define the required confidence and delivers predictions that are guaranteed to be correct to the selected extent. In this study, we apply conformal regression to model molecular properties and bioactivity values and investigate different ways to scale the resultant prediction intervals to create as efficient (i.e., narrow) regressors as possible. Different algorithms to estimate the prediction uncertainty were used to normalize the prediction ranges, and the different approaches were evaluated on 29 publicly available data sets. Our results show that the most efficient conformal regressors are obtained when using the natural exponential of the ensemble standard deviation from the underlying random forest to scale the prediction intervals, but other approaches were almost as efficient. This approach afforded an average prediction range of 1.65 pIC50 units at the 80% confidence level when applied to bioactivity modeling. The choice of nonconformity function has a pronounced impact on the average prediction range with a difference of close to one log unit in bioactivity between the tightest and widest prediction range. Overall, conformal regression is a robust approach to generate bioactivity predictions with associated confidence.


Assuntos
Informática/métodos , Aprendizado de Máquina , Relação Quantitativa Estrutura-Atividade , Incerteza , Tomada de Decisões
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa