Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 183(2): 474-489.e17, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33035451

RESUMO

Mg2+ is the most abundant divalent cation in metazoans and an essential cofactor for ATP, nucleic acids, and countless metabolic enzymes. To understand how the spatio-temporal dynamics of intracellular Mg2+ (iMg2+) are integrated into cellular signaling, we implemented a comprehensive screen to discover regulators of iMg2+ dynamics. Lactate emerged as an activator of rapid release of Mg2+ from endoplasmic reticulum (ER) stores, which facilitates mitochondrial Mg2+ (mMg2+) uptake in multiple cell types. We demonstrate that this process is remarkably temperature sensitive and mediated through intracellular but not extracellular signals. The ER-mitochondrial Mg2+ dynamics is selectively stimulated by L-lactate. Further, we show that lactate-mediated mMg2+ entry is facilitated by Mrs2, and point mutations in the intermembrane space loop limits mMg2+ uptake. Intriguingly, suppression of mMg2+ surge alleviates inflammation-induced multi-organ failure. Together, these findings reveal that lactate mobilizes iMg2+ and links the mMg2+ transport machinery with major metabolic feedback circuits and mitochondrial bioenergetics.


Assuntos
Retículo Endoplasmático/metabolismo , Ácido Láctico/metabolismo , Magnésio/metabolismo , Animais , Células COS , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Chlorocebus aethiops , Retículo Endoplasmático/fisiologia , Feminino , Células HeLa , Células Hep G2 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo
2.
Diabetes Metab Res Rev ; 39(6): e3643, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36988137

RESUMO

BACKGROUND: Plasma levels of angiopoietin-like protein 8 (ANGPTL8) are regulated by feeding and they increase following glucose ingestion. Because both plasma glucose and insulin increase following food ingestion, we aimed to determine whether the increase in plasma insulin and glucose or both are responsible for the increase in ANGPTL8 levels. METHODS: ANGPTL8 levels were measured in 30 subjects, 14 with impaired fasting glucose (IFG), and 16 with normal fasting glucose (NFG); the subjects received 75g glucose oral Glucose tolerance test (OGTT), multistep euglycaemic hyperinsulinemic clamp and hyperglycaemic clamp with pancreatic clamp. RESULTS: Subjects with IFG had significantly higher ANGPTL8 than NGT subjects during the fasting state (p < 0.05). During the OGTT, plasma ANGPTL8 concentration increased by 62% above the fasting level (p < 0.0001), and the increase above fasting in ANGPTL8 levels was similar in NFG and IFG individuals. During the multistep insulin clamp, there was a dose-dependent increase in plasma ANGPTL8 concentration. During the 2-step hyperglycaemic clamp, the rise in plasma glucose concentration failed to cause any change in the plasma ANGPTL8 concentration from baseline. CONCLUSIONS: In response to nutrient ingestion, ANGPTL8 level increased due to increased plasma insulin concentration, not to the rise in plasma glucose. The incremental increase above baseline in plasma ANGLPTL8 during OGTT was comparable between people with normal glucose tolerance and IFG.


Assuntos
Intolerância à Glucose , Hiperinsulinismo , Resistência à Insulina , Hormônios Peptídicos , Estado Pré-Diabético , Humanos , Glicemia/metabolismo , Intolerância à Glucose/metabolismo , Proteína 8 Semelhante a Angiopoietina , Insulina/metabolismo , Glucose/metabolismo , Jejum , Ingestão de Alimentos , Insulina Regular Humana , Nutrientes , Resistência à Insulina/fisiologia
3.
Naturwissenschaften ; 110(4): 27, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37272962

RESUMO

The maxillary canal of the titanosuchid dinocephalian Jonkeria is described based on digitised serial sections. We highlight that its morphology is more like that of the tapinocephalid Moschognathus than that of Anteosaurus. This is unexpected given the similarities between the dentition of Jonkeria and Anteosaurus (i.e., presence of a canine) and the fact that the branching pattern of the maxillary canal in synapsids usually co-varies with dentition. Hypotheses to account for similarities between Jonkeria and Moschognathus (common ancestry, function in social signalling or underwater sensing) are discussed. It is likely that the maxillary canal carries a strong phylogenetic signal, here supporting the clade Tapinocephalia.


Assuntos
Meio Ambiente , Maxila , Animais , Cães , Filogenia , Maxila/anatomia & histologia
4.
Am J Physiol Endocrinol Metab ; 323(2): E123-E132, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35723225

RESUMO

Fibroblast growth factor 21 (FGF21) is increased acutely by carbohydrate ingestion and is elevated in patients with type 2 diabetes (T2D). However, the physiological significance of increased FGF21 in humans remains largely unknown. We examined whether FGF21 contributed to the metabolic improvements observed following treatment of patients with T2D with either triple (metformin/pioglitazone/exenatide) or conventional (metformin/insulin/glipizide) therapy for 3 yr. Forty-six patients with T2D were randomized to receive either triple or conventional therapy to maintain HbA1c < 6.5%. A 2-h 75-g oral glucose tolerance test (OGTT) was performed at baseline and following 3 years of treatment to assess glucose tolerance, insulin sensitivity, and ß-cell function. Plasma total and bioactive FGF21 levels were quantitated before and during the OGTT at both visits. Patients in both treatment arms experienced significant improvements in glucose control, but insulin sensitivity and ß-cell function were markedly increased after triple therapy. At baseline, FGF21 levels were regulated acutely during the OGTT in both groups. After treatment, fasting total and bioactive FGF21 levels were significantly reduced in patients receiving triple therapy, but there was a relative increase in the proportion of bioactive FGF21 compared with that observed in conventionally treated subjects. Relative to baseline studies, triple therapy treatment also significantly modified FGF21 levels in response to a glucose load. These changes in circulating FGF21 were correlated with markers of improved glucose control and insulin sensitivity. Alterations in the plasma FGF21 profile may contribute to the beneficial metabolic effects of pioglitazone and exenatide in human patients with T2D.NEW & NOTEWORTHY In patients with T2D treated with a combination of metformin/pioglitazone/exenatide (triple therapy), we observed reduced total and bioactive plasma FGF21 levels and a relative increase in the proportion of circulating bioactive FGF21 compared with that in patients treated with metformin and sequential addition of glipizide and basal insulin glargine (conventional therapy). These data suggest that FGF21 may contribute, at least in part, to the glycemic benefits observed following combination therapy in patients with T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Metformina , Tiazolidinedionas , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Exenatida , Fatores de Crescimento de Fibroblastos , Glipizida , Hemoglobinas Glicadas/metabolismo , Humanos , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Peptídeos , Pioglitazona , Peçonhas
5.
Am J Physiol Endocrinol Metab ; 318(5): E613-E624, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32154742

RESUMO

The angiopoietin-like protein (ANGPTL) family represents a promising therapeutic target for dyslipidemia, which is a feature of obesity and type 2 diabetes (T2DM). The aim of the present study was to determine the metabolic role of ANGPTL8 and to investigate its nutritional, hormonal, and molecular regulation in key metabolic tissues. The regulation of Angptl8 gene expression by insulin and glucose was quantified using a combination of in vivo insulin clamp experiments in mice and in vitro experiments in primary and cultured hepatocytes and adipocytes. The role of AMPK signaling was examined, and the transcriptional control of Angptl8 was determined using bioinformatic and luciferase reporter approaches. The metabolism of Angptl8 knockout mice (ANGPTL8-/-) was examined following chow and high-fat diets (HFD). Insulin acutely increased Angptl8 expression in liver and adipose tissue, which involved the CCAAT/enhancer-binding protein (C/EBPß) transcription factor. In insulin clamp experiments, glucose further enhanced Angptl8 expression in the presence of insulin in adipose tissue. The activation of AMPK signaling antagonized the effect of insulin on Angptl8 expression in hepatocytes and adipocytes. The ANGPTL8-/- mice had improved glucose tolerance and displayed reduced fed and fasted plasma triglycerides. However, there was no change in body weight or steatosis in ANGPTL8-/- mice after the HFD. These data show that ANGPTL8 plays important metabolic roles in mice that extend beyond triglyceride metabolism. The finding that insulin, glucose, and AMPK signaling regulate Angptl8 expression may provide important clues about the distinct function of ANGPTL8 in these tissues.


Assuntos
Tecido Adiposo/metabolismo , Proteínas Semelhantes a Angiopoietina/metabolismo , Glucose/metabolismo , Homeostase/fisiologia , Fígado/metabolismo , Células 3T3-L1 , Adenilato Quinase/metabolismo , Proteína 8 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/genética , Animais , Dieta Hiperlipídica , Regulação da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Insulina/farmacologia , Camundongos , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos
7.
Diabetes Obes Metab ; 19(9): 1322-1326, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28477418

RESUMO

The sodium-glucose co-transporters (SGLTs) are responsible for the tubular reabsorption of filtered glucose from the kidney into the bloodstream. The inhibition of SGLT2-mediated glucose reabsorption is a novel and highly effective strategy to alleviate hyperglycaemia in patients with type 2 diabetes mellitus (T2DM). However, the effectiveness of SGLT2 inhibitor therapy is diminished due, in part, to a compensatory increase in the maximum reabsorptive capacity (Tm) for glucose in patients with T2DM. We hypothesized that this increase in Tm could be explained by an increase in the tubular expression of SGLT and glucose transporters (GLUT) in these patients. To examine this, we obtained human kidney biopsy specimens from patients with or without T2DM and examined the mRNA expression of SGLTs and GLUTs. The expression of SGLT1 is markedly increased in the kidney of patients with T2DM, and SGLT1 mRNA is highly and significantly correlated with fasting and postprandial plasma glucose and HbA1c. In contrast, our data demonstrate that the levels of SGLT2 and GLUT2 mRNA are downregulated in diabetic patients, but not to a statistically significant level. These important findings are clinically significant and may have implications for the treatment of T2DM using strategies that target SGLT transporters in the kidney.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Regulação da Expressão Gênica , Transportador de Glucose Tipo 2/metabolismo , Rim/metabolismo , RNA Mensageiro/metabolismo , Transportador 1 de Glucose-Sódio/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Adulto , Biópsia , Glicemia/análise , China , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Jejum , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 2/genética , Hemoglobinas Glicadas/análise , Humanos , Hipoglicemiantes/uso terapêutico , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Período Pós-Prandial , Reprodutibilidade dos Testes , Transportador 1 de Glucose-Sódio/genética , Transportador 2 de Glucose-Sódio/genética
8.
Nucleic Acids Res ; 42(22): 13646-61, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25414334

RESUMO

In the liver Wnt-signaling contributes to the metabolic fate of hepatocytes, but the precise role of the TCF7L2 in this process is unknown. We employed a temporal RNA-Seq approach to examine gene expression 3-96 h following Tcf7l2 silencing in rat hepatoma cells, and combined this with ChIP-Seq to investigate mechanisms of target gene regulation by TCF7L2. Silencing Tcf7l2 led to a time-dependent appearance of 406 differentially expressed genes (DEGs), including key regulators of cellular growth and differentiation, and amino acid, lipid and glucose metabolism. Direct regulation of 149 DEGs was suggested by strong proximal TCF7L2 binding (peak proximity score > 10) and early mRNA expression changes (≤ 18 h). Indirect gene regulation by TCF7L2 likely occurred via alternate transcription factors, including Hnf4a, Foxo1, Cited2, Myc and Lef1, which were differentially expressed following Tcf7l2 knock-down. Tcf7l2-silencing enhanced the expression and chromatin occupancy of HNF4α, and co-siRNA experiments revealed that HNF4α was required for the regulation of a subset of metabolic genes by TCF7L2, particularly those involved in lipid and amino-acid metabolism. Our findings suggest TCF7L2 is an important regulator of the hepatic phenotype, and highlight novel mechanisms of gene regulation by TCF7L2 that involve interplay between multiple hepatic transcriptional pathways.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas Experimentais/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Animais , Sítios de Ligação , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Inativação Gênica , Genoma , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , Ratos , Análise de Sequência de DNA , Análise de Sequência de RNA , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Am J Physiol Renal Physiol ; 309(11): F889-900, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26354881

RESUMO

Hyperglycemia is the primary factor responsible for the microvascular, and to a lesser extent macrovascular, complications of diabetes. Despite this well-established relationship, approximately half of all type 2 diabetic patients in the US have a hemoglobin A1c (HbA1c) ≥7.0%. This is associated in part with the side effects, i.e., weight gain and hypoglycemia, of currently available antidiabetic agents and in part with the failure to utilize medications that reverse the basic pathophysiological defects present in patients with type 2 diabetes. The kidney has been shown to play a central role in the development of hyperglycemia by excessive production of glucose throughout the sleeping hours and enhanced reabsorption of filtered glucose by the renal tubules secondary to an increase in the threshold at which glucose spills into the urine. Recently, a new class of antidiabetic agents, the sodium-glucose cotransporter 2 (SGLT2) inhibitors, has been developed and approved for the treatment of patients with type 2 diabetes. In this review, we examine their mechanism of action, efficacy, safety, and place in the therapeutic armamentarium. Since the SGLT2 inhibitors have a unique mode of action that differs from all other oral and injectable antidiabetic agents, they can be used at all stages of the disease and in combination with all other antidiabetic medications.


Assuntos
Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Túbulos Renais Proximais/efeitos dos fármacos , Reabsorção Renal/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Quimioterapia Combinada , Humanos , Hipoglicemiantes/efeitos adversos , Túbulos Renais Proximais/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Resultado do Tratamento
10.
Hum Hered ; 76(1): 36-46, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24060607

RESUMO

OBJECTIVE: Type 2 diabetes (T2DM) is a complex metabolic disease and is more prevalent in certain ethnic groups such as the Mexican Americans. The goal of our study was to perform a genome-wide linkage (GWL) analysis to localize T2DM susceptibility loci in Mexican Americans. METHODS: We used the phenotypic and genotypic data from 1,122 Mexican-American individuals (307 families) who participated in the Veterans Administration Genetic Epidemiology Study (VAGES). GWL analysis was performed using the variance components approach. Data from 2 additional Mexican-American family studies, the San Antonio Family Heart Study (SAFHS) and the San Antonio Family Diabetes/Gallbladder Study (SAFDGS), were combined with the VAGES data to test for improved linkage evidence. RESULTS: After adjusting for covariate effects, T2DM was found to be under significant genetic influences (h2 = 0.62, p = 2.7 × 10(-6)). The strongest evidence for linkage of T2DM occurred between markers D9S1871 and D9S2169 on chromosome 9p24.2-p24.1 (LOD = 1.8). Given that we previously reported suggestive evidence for linkage of T2DM at this region also in SAFDGS, we found the significant and increased linkage evidence (LOD = 4.3, empirical p = 1.0 × 10(-5), genome-wide p = 1.6 × 10(-3)) for T2DM at the same chromosomal region, when we performed a GWL analysis of the VAGES data combined with the SAFHS and SAFDGS data. CONCLUSION: Significant T2DM linkage evidence was found on chromosome 9p24 in Mexican Americans. Importantly, the chromosomal region of interest in this study overlaps with several recent genome-wide association studies involving T2DM-related traits. Given its overlap with such findings and our own initial T2DM association findings in the 9p24 chromosomal region, high throughput sequencing of the linked chromosomal region could identify the potential causal T2DM genes.


Assuntos
Cromossomos Humanos Par 9 , Diabetes Mellitus Tipo 2/genética , Ligação Genética , Americanos Mexicanos/genética , Adulto , Mapeamento Cromossômico , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade
11.
Anat Rec (Hoboken) ; 307(4): 1538-1558, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38131650

RESUMO

Diarthrognathus broomi is a transitional taxon between non-mammaliaform cynodonts and Mammaliaformes that occurred during the Late Triassic to Early Jurassic. All known specimens of Diarthrognathus represent juveniles, and the postcrania have not been thoroughly described. The palatal, basicranial and postcranial elements of the referred specimen NMQR 1535 are described here for the first time using 3D reconstructions generated from X-ray micro-computed tomography (µCT) data. The presence of a large interpterygoid vacuity, open medial suture between the vomers and medially unossified secondary palate all support the interpretation that NMQR 1535 is a juvenile. In addition, Diarthrognathus uniquely possesses "suborbital" vacuities, which distinguishes it from every other known cynodont. The presence of an ossified olecranon process, among other features, suggests that Diarthrognathus may have been a scratch-digger. The postcranial skeleton of Diarthrognathus appears to be more plesiomorphic than tritylodontids, Brasilodon and other tritheledontids as, among other traits, it retains amphicoelous vertebrae. However, this taxon also displays synapomorphies with the more derived cynodonts, such as the mammalian pattern of neurocentral ossification and possible absence of an ectepicondylar foramen.


Assuntos
Evolução Biológica , Fósseis , Animais , Microtomografia por Raio-X , Mamíferos , Palato/diagnóstico por imagem
12.
Res Sq ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39257980

RESUMO

Unintentional weight loss, primarily due to the loss of fat mass rather than muscle mass, is common among patients with Parkinson's disease (PD) and is associated with poor quality of life and accelerated disease progression. Since transgenic mice overexpressing human wild-type α-synuclein (α-Syn mice) are modestly leaner than control mice, and since diabetes, a metabolic disorder, is a major risk factor for PD, we reasoned that high-fat diet-induced diabetes/metabolic dysregulation in α-Syn mice may serve as a robust tool for exploring how early α-synuclein pathology contributes to metabolic dysregulation, leading to weight loss in PD. Thus, α-Syn and age-matched controls were fed a high-fat diet (HFD) chow (60% fat calories) ad libitum for four months. Compared with controls on HFD (control-HFD), α-Syn mice on HFD (α-Syn-HFD) were dramatically leaner. The resistance to gaining weight in α-Syn-HFD mice was accompanied by improved glucose tolerance, a dramatic decrease in fat mass, and an increase in energy expenditure. Despite this leaner phenotype and better glucose tolerance, the mortality was much higher in male α-Syn-HFD mice than in all controls, but was unaffected in females, suggesting protective effects of female sex hormones, as well as lower α-synuclein levels. Immunoblot analysis of insulin signaling in the olfactory bulb, the proposed initial seeding site of α-synuclein pathology, revealed a decrease of IGF-IRß, p GSK, and p mTOR in α-Syn-HFD mice. Since GSK-3ß and mTOR regulate synaptic plasticity, we assessed levels of PSD-95 and synaptophysin in the olfactory bulb. As anticipated, we observed a significant decrease in the levels of PSD-95, along with a potentially compensatory increase in synaptophysin levels. Our results show that α-Syn mice, when challenged with diet-induced diabetes/metabolic dysregulation, clearly reveal a profile of robust metabolic dysfunction, thus providing a sensitive tool for assessing the underlying mechanism of metabolic dysfunction and its impact on weight loss and disease progression in PD. We propose a role for olfactory dysfunction in PD-related unintentional weight loss and suggest that strategies aimed at increasing body weight/BMI will improve the quality of life and prognosis for people living with PD.

13.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798427

RESUMO

Objective: The mitochondrial pyruvate carrier (MPC) occupies a critical node in intermediary metabolism, prompting interest in its utility as a therapeutic target for the treatment of obesity and cardiometabolic disease. Dysregulated nutrient metabolism in adipose tissue is a prominent feature of obesity pathophysiology, yet the functional role of adipose MPC has not been explored. We investigated whether the MPC shapes the adaptation of adipose tissue to dietary stress in female and male mice. Methods: The impact of pharmacological and genetic disruption of the MPC on mitochondrial pathways of triglyceride assembly (lipogenesis and glyceroneogenesis) was assessed in 3T3L1 adipocytes and murine adipose explants, combined with analyses of adipose MPC expression in metabolically compromised humans. Whole-body and adipose-specific glucose metabolism were subsequently investigated in male and female mice lacking adipocyte MPC1 (Mpc1AD-/-) and fed either standard chow, high-fat western style, or high-sucrose lipid restricted diets for 24 weeks, using a combination of radiolabeled tracers and GC/MS metabolomics. Results: Treatment with UK5099 or siMPC1 impaired the synthesis of lipids and glycerol-3-phosphate from pyruvate and blunted triglyceride accumulation in 3T3L1 adipocytes, whilst MPC expression in human adipose tissue was negatively correlated with indices of whole-body and adipose tissue metabolic dysfunction. Mature adipose explants from Mpc1AD-/- mice were intrinsically incapable of incorporating pyruvate into triglycerides. In vivo, MPC deletion restricted the incorporation of circulating glucose into adipose triglycerides, but only in female mice fed a zero fat diet, and this associated with sex-specific reductions in tricarboxylic acid cycle pool sizes and compensatory transcriptional changes in lipogenic and glycerol metabolism pathways. However, whole-body adiposity and metabolic health were preserved in Mpc1AD-/- mice regardless of sex, even under conditions of zero dietary fat. Conclusion: These findings highlight the greater capacity for mitochondrially driven triglyceride assembly in adipose from female versus male mice and expose a reliance upon MPC-gated metabolism for glucose partitioning in female adipose under conditions of dietary lipid restriction.

14.
Mol Metab ; 88: 102005, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39137831

RESUMO

OBJECTIVE: The mitochondrial pyruvate carrier (MPC) occupies a critical node in intermediary metabolism, prompting interest in its utility as a therapeutic target for the treatment of obesity and cardiometabolic disease. Dysregulated nutrient metabolism in adipose tissue is a prominent feature of obesity pathophysiology, yet the functional role of adipose MPC has not been explored. We investigated whether the MPC shapes the adaptation of adipose tissue to dietary stress in female and male mice. METHODS: The impact of pharmacological and genetic disruption of the MPC on mitochondrial pathways of triglyceride assembly (lipogenesis and glyceroneogenesis) was assessed in 3T3L1 adipocytes and murine adipose explants, combined with analyses of adipose MPC expression in metabolically compromised humans. Whole-body and adipose-specific glucose metabolism were subsequently investigated in male and female mice lacking adipocyte MPC1 (Mpc1AD-/-) and fed either standard chow, high-fat western style, or high-sucrose lipid restricted diets for 24 weeks, using a combination of radiolabeled tracers and GC/MS metabolomics. RESULTS: Treatment with UK5099 or siMPC1 impaired the synthesis of lipids and glycerol-3-phosphate from pyruvate and blunted triglyceride accumulation in 3T3L1 adipocytes, whilst MPC expression in human adipose tissue was negatively correlated with indices of whole-body and adipose tissue metabolic dysfunction. Mature adipose explants from Mpc1AD-/- mice were intrinsically incapable of incorporating pyruvate into triglycerides. In vivo, MPC deletion restricted the incorporation of circulating glucose into adipose triglycerides, but only in female mice fed a zero fat diet, and this associated with sex-specific reductions in tricarboxylic acid cycle pool sizes and compensatory transcriptional changes in lipogenic and glycerol metabolism pathways. However, whole-body adiposity and metabolic health were preserved in Mpc1AD-/- mice regardless of sex, even under conditions of zero dietary fat. CONCLUSIONS: These findings highlight the greater capacity for mitochondrially driven triglyceride assembly in adipose from female versus male mice and expose a reliance upon MPC-gated metabolism for glucose partitioning in female adipose under conditions of dietary lipid restriction.


Assuntos
Adipócitos , Tecido Adiposo , Glucose , Proteínas de Transporte da Membrana Mitocondrial , Transportadores de Ácidos Monocarboxílicos , Triglicerídeos , Animais , Feminino , Camundongos , Masculino , Glucose/metabolismo , Tecido Adiposo/metabolismo , Humanos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Triglicerídeos/metabolismo , Adipócitos/metabolismo , Células 3T3-L1 , Obesidade/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Ácido Pirúvico/metabolismo , Lipogênese , Dieta Hiperlipídica/efeitos adversos , Camundongos Knockout , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Transporte de Ânions/genética , Acrilatos
15.
Clin Sci (Lond) ; 124(11): 675-84, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23316693

RESUMO

Physiological hyperglycaemia and hyperinsulinaemia are strong modulators of gene expression, which underpins some of their well-known effects on insulin action and energy metabolism. The aim of the present study was to examine whether acute in vivo exposure of healthy humans to hyperinsulinaemia and hyperglycaemia have independent or additive effects on expression of key metabolic genes in skeletal muscle. On three randomized occasions, seven young subjects underwent a 4 h (i) hyperinsulinaemic (50 m-units·m⁻²·min⁻¹) hyperglycaemic (10 mmol/l) clamp (HIHG), (ii) hyperglycaemic (10 mmol/l) euinsulinaemic (5 m-units·m⁻²·min⁻¹) clamp (LIHG) and (iii) hyperinsulinaemic (50 m-units·m⁻²·min⁻¹) euglycaemic (4.5 mmol/l) clamp (HING). Muscle biopsies were obtained before and after each clamp for the determination of expression of genes involved in energy metabolism, and phosphorylation of key insulin signalling proteins. Hyperinsulinaemia and hyperglycaemia exerted independent effects with similar direction of modulation on PI3KR1 (phosphatidylinositol 3-kinase, regulatory 1), LXRα (liver X receptor α), PDK4 (pyruvate dehydrogenase kinase 4) and FOXO1 (forkhead box O1A) and produced an additive effect on PI3KR1, the gene that encodes the p85α subunit of PI3K in human skeletal muscle. Acute hyperglycaemia itself altered the expression of genes involved in fatty acid transport and oxidation [fatty acid transporter (CD36), LCAD (long-chain acyl-CoA dehydrogenase) and FOXO1], and lipogenesis [LXRα, ChREBP (carbohydrate-responseelement-binding protein), ABCA1 (ATP-binding cassette transporter A1) and G6PD (glucose-6-phosphate dehydrogenase). Surperimposing hyperinsulinaemia on hyperglycaemia modulated a number of genes involved in insulin signalling, glucose metabolism and intracellular lipid accumulation and exerted an additive effect on PI3KR1. These may be early molecular events that precede the development of glucolipotoxicity and insulin resistance normally associated with more prolonged periods of hyperglycaemia and hyperinsulinaemia.


Assuntos
Glicemia , Metabolismo Energético/genética , Hiperinsulinismo/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Adulto , Biópsia , Expressão Gênica , Regulação da Expressão Gênica , Glucose/metabolismo , Humanos , Hiperinsulinismo/induzido quimicamente , Hiperinsulinismo/genética , Masculino , Músculo Esquelético/patologia , Fosforilação , Transdução de Sinais
16.
Philos Trans R Soc Lond B Biol Sci ; 378(1880): 20220084, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37183903

RESUMO

Mammals are diagnosed by more than 30 osteological characters (e.g. squamosal-dentary jaw joint, three inner ear ossicles, etc.) that are readily preserved in the fossil record. However, it is the suite of physiological, soft tissue and behavioural characters (e.g. endothermy, hair, lactation, isocortex and parental care), the evolutionary origins of which have eluded scholars for decades, that most prominently distinguishes living mammals from other amniotes. Here, we review recent works that illustrate how evolutionary changes concentrated in the cranial and dental morphology of mammalian ancestors, the Permian-Jurassic Cynodontia and Mammaliaformes, can potentially be used to document the origin of some of the most crucial defining features of mammals. We discuss how these soft tissue and behavioural traits are highly integrated, and how their evolution is intermingled with that of craniodental traits, thus enabling the tracing of their previously out-of-reach phylogenetic history. Most of these osteological and dental proxies, such as the maxillary canal, bony labyrinth and dental replacement only recently became more easily accessible-thanks, in large part, to the widespread use of X-ray microtomography scanning in palaeontology-because they are linked to internal cranial characters. This article is part of the theme issue 'The mammalian skull: development, structure and function'.


Assuntos
Evolução Biológica , Mamíferos , Animais , Feminino , Filogenia , Mamíferos/anatomia & histologia , Crânio , Paleontologia , Fósseis
17.
Cell Rep ; 42(3): 112155, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36857182

RESUMO

The most abundant cellular divalent cations, Mg2+ (mM) and Ca2+ (nM-µM), antagonistically regulate divergent metabolic pathways with several orders of magnitude affinity preference, but the physiological significance of this competition remains elusive. In mice consuming a Western diet, genetic ablation of the mitochondrial Mg2+ channel Mrs2 prevents weight gain, enhances mitochondrial activity, decreases fat accumulation in the liver, and causes prominent browning of white adipose. Mrs2 deficiency restrains citrate efflux from the mitochondria, making it unavailable to support de novo lipogenesis. As citrate is an endogenous Mg2+ chelator, this may represent an adaptive response to a perceived deficit of the cation. Transcriptional profiling of liver and white adipose reveals higher expression of genes involved in glycolysis, ß-oxidation, thermogenesis, and HIF-1α-targets, in Mrs2-/- mice that are further enhanced under Western-diet-associated metabolic stress. Thus, lowering mMg2+ promotes metabolism and dampens diet-induced obesity and metabolic syndrome.


Assuntos
Tecido Adiposo Marrom , Metabolismo Energético , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Proteínas de Transporte de Cátions , Dieta , Dieta Hiperlipídica , Metabolismo Energético/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Obesidade/metabolismo , Termogênese/genética
18.
bioRxiv ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38168419

RESUMO

Skeletal muscle, the largest human organ by weight, is relevant to several polygenic metabolic traits and diseases including type 2 diabetes (T2D). Identifying genetic mechanisms underlying these traits requires pinpointing the relevant cell types, regulatory elements, target genes, and causal variants. Here, we used genetic multiplexing to generate population-scale single nucleus (sn) chromatin accessibility (snATAC-seq) and transcriptome (snRNA-seq) maps across 287 frozen human skeletal muscle biopsies representing 456,880 nuclei. We identified 13 cell types that collectively represented 983,155 ATAC summits. We integrated genetic variation to discover 6,866 expression quantitative trait loci (eQTL) and 100,928 chromatin accessibility QTL (caQTL) (5% FDR) across the five most abundant cell types, cataloging caQTL peaks that atlas-level snATAC maps often miss. We identified 1,973 eGenes colocalized with caQTL and used mediation analyses to construct causal directional maps for chromatin accessibility and gene expression. 3,378 genome-wide association study (GWAS) signals across 43 relevant traits colocalized with sn-e/caQTL, 52% in a cell-specific manner. 77% of GWAS signals colocalized with caQTL and not eQTL, highlighting the critical importance of population-scale chromatin profiling for GWAS functional studies. GWAS-caQTL colocalization showed distinct cell-specific regulatory paradigms. For example, a C2CD4A/B T2D GWAS signal colocalized with caQTL in muscle fibers and multiple chromatin loop models nominated VPS13C, a glucose uptake gene. Sequence of the caQTL peak overlapping caSNP rs7163757 showed allelic regulatory activity differences in a human myocyte cell line massively parallel reporter assay. These results illuminate the genetic regulatory architecture of human skeletal muscle at high-resolution epigenomic, transcriptomic, and cell state scales and serve as a template for population-scale multi-omic mapping in complex tissues and traits.

19.
Curr Diab Rep ; 12(3): 230-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22528597

RESUMO

In addition to its central role in the development of microvascular complications, hyperglycemia plays an important role in the pathogenesis of type 2 diabetes mellitus (T2DM) by means of glucotoxicity. Thus, effective glycemic control not only reduces the incidence of microvascular complications but also corrects the metabolic abnormalities that contribute to the progression of the disease. Progressive ß-cell failure and multiple side effects, including hypoglycemia and weight gain, associated with many current therapies present obstacles to the achievement of optimal and durable glycemic control in subjects with T2DM. Most recently, inhibitors of the renal sodium-glucose cotransporter have been developed to reduce the plasma glucose concentration by producing glucosuria. Because the mechanism of action of these oral antidiabetic agents is independent of ß-cell function and tissue sensitivity to insulin, they improve glycemic control while avoiding hypoglycemia and promoting weight loss. In this review, we summarize the available data concerning the mechanism of action, efficacy, and safety of this novel antidiabetic class of therapeutic agents.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Angiopatias Diabéticas/tratamento farmacológico , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/fisiopatologia , Angiopatias Diabéticas/sangue , Angiopatias Diabéticas/prevenção & controle , Feminino , Taxa de Filtração Glomerular , Hemoglobinas Glicadas/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Masculino
20.
Metabolism ; 129: 155142, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35066003

RESUMO

Insulin is the master regulator of glucose, lipid, and protein metabolism. Following ingestion of an oral glucose load or mixed meal, the plasma glucose concentration rises, insulin secretion by the beta cells is stimulated and the hyperinsulinemia, working in concert with hyperglycemia, causes: (i) suppression of endogenous (primarily reflects hepatic) glucose production, (ii) stimulation of glucose uptake by muscle, liver, and adipocytes, (iii) inhibition of lipolysis leading to a decline in plasma FFA concentration which contributes to the suppression of hepatic glucose production and augmentation of muscle glucose uptake, and (iv) vasodilation in muscle, which contributes to enhanced muscle glucose disposal. Herein, the integrated physiologic impact of insulin to maintain normal glucose homeostasis is reviewed and the molecular basis of insulin's diverse actions in muscle, liver, adipocytes, and vasculature are discussed.


Assuntos
Resistência à Insulina , Insulina , Metabolismo dos Carboidratos , Glucose/metabolismo , Humanos , Insulina/metabolismo , Lipólise , Fígado/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa