RESUMO
Nucleosomes, the basic structural units of chromatin, hinder recruitment and activity of various DNA repair proteins, necessitating modifications that enhance DNA accessibility. Poly(ADP-ribosyl)ation (PARylation) of proteins near damage sites is an essential initiation step in several DNA-repair pathways; however, its effects on nucleosome structural dynamics and organization are unclear. Using NMR, cryoelectron microscopy (cryo-EM), and biochemical assays, we show that PARylation enhances motions of the histone H3 tail and DNA, leaving the configuration of the core intact while also stimulating nuclease digestion and ligation of nicked nucleosomal DNA by LIG3. PARylation disrupted interactions between nucleosomes, preventing self-association. Addition of LIG3 and XRCC1 to PARylated nucleosomes generated condensates that selectively partition DNA repair-associated proteins in a PAR- and phosphorylation-dependent manner in vitro. Our results establish that PARylation influences nucleosomes across different length scales, extending from the atom-level motions of histone tails to the mesoscale formation of condensates with selective compositions.
Assuntos
Nucleossomos , Poli ADP Ribosilação , Nucleossomos/genética , Poli ADP Ribosilação/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Microscopia Crioeletrônica , Condensados Biomoleculares , Reparo do DNA , Histonas/genética , Histonas/metabolismo , DNA/genética , DNA/metabolismo , Dano ao DNA , Poli(ADP-Ribose) Polimerase-1/metabolismoRESUMO
Epigenetic modifications of chromatin play a critical role in regulating the fidelity of the genetic code and in controlling the translation of genetic information into the protein components of the cell. One key posttranslational modification is acetylation of histone lysine residues. Molecular dynamics simulations, and to a smaller extent experiment, have established that lysine acetylation increases the dynamics of histone tails. However, a systematic, atomic resolution experimental investigation of how this epigenetic mark, focusing on one histone at a time, influences the structural dynamics of the nucleosome beyond the tails, and how this translates into accessibility of protein factors such as ligases and nucleases, has yet to be performed. Herein, using NMR spectroscopy of nucleosome core particles (NCPs), we evaluate the effects of acetylation of each histone on tail and core dynamics. We show that for histones H2B, H3, and H4, the histone core particle dynamics are little changed, even though the tails have increased amplitude motions. In contrast, significant increases to H2A dynamics are observed upon acetylation of this histone, with the docking domain and L1 loop particularly affected, correlating with increased susceptibility of NCPs to nuclease digestion and more robust ligation of nicked DNA. Dynamic light scattering experiments establish that acetylation decreases inter-NCP interactions in a histone-dependent manner and facilitates the development of a thermodynamic model for NCP stacking. Our data show that different acetylation patterns result in nuanced changes to NCP dynamics, modulating interactions with other protein factors, and ultimately controlling biological output.
Assuntos
Histonas , Nucleossomos , Histonas/metabolismo , Acetilação , Lisina/metabolismo , Processamento de Proteína Pós-TraducionalRESUMO
O-GlcNAc transferase (OGT) is an essential glycosylating enzyme that catalyzes the addition of N-acetylglucosamine to serine or threonine residues of nuclear and cytoplasmic proteins. The enzyme glycosylates a broad range of peptide sequences and the prediction of glycosylation sites has proven challenging. The lack of an experimentally verified set of polypeptide sequences that are not glycosylated by OGT has made prediction of legitimate glycosylation sites more difficult. Here, we tested a number of intrinsically disordered protein regions as substrates of OGT to establish a set of sequences that are not glycosylated by OGT. The negative data set suggests an amino acid compositional bias for OGT targets. This compositional bias was validated by modifying the amino acid composition of the protein fused in sarcoma (FUS) to enhance glycosylation. NMR experiments demonstrate that the tetratricopeptide repeat region of OGT can bind FUS and that glycosylation-promoting mutations enhance binding. These results provide evidence that the tetratricopeptide repeat region recognizes disordered segments of substrates with particular compositions to promote glycosylation, providing insight into the broad specificity of OGT.
Assuntos
N-Acetilglucosaminiltransferases , Aminoácidos/metabolismo , Glicosilação , Mutação , N-Acetilglucosaminiltransferases/metabolismo , Humanos , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biologia Computacional , Imageamento por Ressonância MagnéticaRESUMO
Exciting recent work has highlighted that numerous cellular compartments lack encapsulating lipid bilayers (often called "membraneless organelles"), and that their structure and function are central to the regulation of key biological processes, including transcription, RNA splicing, translation, and more. These structures have been described as "biomolecular condensates" to underscore that biomolecules can be significantly concentrated in them. Many condensates, including RNA granules and processing bodies, are enriched in proteins and nucleic acids. Biomolecular condensates exhibit a range of material states from liquid- to gel-like, with the physical process of liquid-liquid phase separation implicated in driving or contributing to their formation. To date, in vitro studies of phase separation have provided mechanistic insights into the formation and function of condensates. However, the link between the often micron-sized in vitro condensates with nanometer-sized cellular correlates has not been well established. Consequently, questions have arisen as to whether cellular structures below the optical resolution limit can be considered biomolecular condensates. Similarly, the distinction between condensates and discrete dynamic hub complexes is debated. Here we discuss the key features that define biomolecular condensates to help understand behaviors of structures containing and generating RNA.
Assuntos
Condensados Biomoleculares/química , Corpos de Processamento/química , Proteínas de Ligação a RNA/química , RNA/química , Ribonucleoproteínas/química , Grânulos de Estresse/química , Condensados Biomoleculares/metabolismo , Células Eucarióticas/química , Células Eucarióticas/metabolismo , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Corpos de Processamento/metabolismo , Biossíntese de Proteínas , RNA/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Grânulos de Estresse/metabolismo , Terminologia como Assunto , Transcrição GênicaRESUMO
The role of biomolecular condensates in regulating biological function and the importance of dynamic interactions involving intrinsically disordered protein regions (IDRs) in their assembly are increasingly appreciated. While computational and theoretical approaches have provided significant insights into IDR phase behavior, establishing the critical interactions that govern condensation with atomic resolution through experiment is more difficult, given the lack of applicability of standard structural biological tools to study these highly dynamic large-scale associated states. NMR can be a valuable method, but the dynamic and viscous nature of condensed IDRs presents challenges. Using the C-terminal IDR (607 to 709) of CAPRIN1, an RNA-binding protein found in stress granules, P bodies, and messenger RNA transport granules, we have developed and applied a variety of NMR methods for studies of condensed IDR states to provide insights into interactions driving and modulating phase separation. We identify ATP interactions with CAPRIN1 that can enhance or reduce phase separation. We also quantify specific side-chain and backbone interactions within condensed CAPRIN1 that define critical sequences for phase separation and that are reduced by O-GlcNAcylation known to occur during cell cycle and stress. This expanded NMR toolkit that has been developed for characterizing IDR condensates has generated detailed interaction information relevant for understanding CAPRIN1 biology and informing general models of phase separation, with significant potential future applications to illuminate dynamic structure-function relationships in other biological condensates.
Assuntos
Trifosfato de Adenosina/química , Proteínas de Ciclo Celular/química , Simulação de Dinâmica Molecular , Humanos , Ressonância Magnética Nuclear Biomolecular , Domínios ProteicosRESUMO
Many membraneless organelles are thought to be biomolecular condensates formed by phase separation of proteins and other biopolymers. Post-translational modifications (PTMs) can impact protein phase separation behavior, although for many PTMs this aspect of their function is unknown. O-linked ß-D-N-acetylglucosaminylation (O-GlcNAcylation) is an abundant form of intracellular glycosylation whose roles in regulating biomolecular condensate assembly and dynamics have not been delineated. Using an in vitro approach, we found that O-GlcNAcylation reduces the phase separation propensity of the EWS N-terminal low complexity region (LCRN) under different conditions, including in the presence of the arginine- and glycine-rich RNA-binding domains (RBD). O-GlcNAcylation enhances fluorescence recovery after photobleaching (FRAP) within EWS LCRN condensates and causes the droplets to exhibit more liquid-like relaxation following fusion. Following extended incubation times, EWS LCRN+RBD condensates exhibit diminished FRAP, indicating a loss of fluidity, while condensates containing the O-GlcNAcylated LCRN do not. In HeLa cells, EWS is less O-GlcNAcylated following OGT knockdown, which correlates with its increased accumulation in a filter retardation assay. Relative to the human proteome, O-GlcNAcylated proteins are enriched with regions that are predicted to phase separate, suggesting a general role of O-GlcNAcylation in regulation of biomolecular condensates.
Assuntos
Acetilglucosamina/metabolismo , Proteína EWS de Ligação a RNA/metabolismo , Acetilglucosamina/química , Condensados Biomoleculares , Células HeLa , Humanos , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Proteína EWS de Ligação a RNA/química , Células Tumorais CultivadasRESUMO
The compaction of chromatin into mitotic chromosomes is essential for faithful transmission of the genome during cell division. In eukaryotes, chromosome morphogenesis is regulated by the condensin complex, though the exact mechanism used to target condensin to chromatin and initiate condensation is not understood. Here, we reveal that condensin contains an intrinsically disordered region (IDR) that modulates its association with chromatin in early mitosis and exhibits phase separation. We describe DNA-binding motifs within the IDR that, upon deletion, inflict striking defects in chromosome condensation and segregation, ill-timed condensin turnover on chromatin, and cell death. Importantly, we demonstrate that the condensin IDR can impart cell cycle regulatory functions when transferred to other subunits within the complex, indicating its autonomous nature. Collectively, our study unveils the molecular basis for the initiation of chromosome condensation in early mitosis and how this process ultimately promotes genomic stability and faultless cell division.
Assuntos
Adenosina Trifosfatases , Proteínas de Ligação a DNA , Mitose , Complexos Multiproteicos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Complexos Multiproteicos/metabolismo , Adenosina Trifosfatases/metabolismo , Cromatina/metabolismo , DNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Cromossomos/metabolismo , Ligação Proteica , Segregação de Cromossomos , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
Poly(ADP-ribose) polymerase 1 (PARP1) is one of the first responders to DNA damage and plays crucial roles in recruiting DNA repair proteins through its activity - poly(ADP-ribosyl)ation (PARylation). The enrichment of DNA repair proteins at sites of DNA damage has been described as the formation of a biomolecular condensate. However, it is not understood how PARP1 and PARylation contribute to the formation and organization of DNA repair condensates. Using recombinant human PARP1 in vitro, we find that PARP1 readily forms viscous biomolecular condensates in a DNA-dependent manner and that this depends on its three zinc finger (ZnF) domains. PARylation enhances PARP1 condensation in a PAR chain-length dependent manner and increases the internal dynamics of PARP1 condensates. DNA and single-strand break repair proteins XRCC1, LigIII, Polß, and FUS partition in PARP1 condensates, although in different patterns. While Polß and FUS are both homogeneously mixed within PARP1 condensates, FUS enrichment is greatly enhanced upon PARylation whereas Polß partitioning is not. XRCC1 and LigIII display an inhomogeneous organization within PARP1 condensates; their enrichment in these multiphase condensates is enhanced by PARylation. Functionally, PARP1 condensates concentrate short DNA fragments and facilitate compaction of long DNA and bridge DNA ends. Furthermore, the presence of PARP1 condensates significantly promotes DNA ligation upon PARylation. These findings provide insight into how PARP1 condensation and PARylation regulate the assembly and biochemical activities in DNA repair foci, which may inform on how PARPs function in other PAR-driven condensates.
RESUMO
Regulation of messenger RNA (mRNA) transcription, processing and translation occurs in the context of biomolecular condensates. How the physical properties of condensates connect with their biological regulatory functions is an ongoing area of interest, particularly for RNA metabolic pathways. Phosphorylation has emerged as an important mechanism for regulating protein phase separation propensities and localization patterns into different condensates, affecting compositions and dynamics. Key factors in transcription, mRNA processing and translation exhibit such phosphorylation-dependent changes in their roles within condensates, including their catalytic activities. Phosphorylation is increasingly understood to regulate the exchange of proteins through functionally linked condensates to fulfil their mRNA metabolic functions.