Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Prostaglandins Other Lipid Mediat ; 158: 106605, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34923151

RESUMO

Bone modeling can be modulated by lipid signals such as arachidonic acid (AA) and its cyclooxygenase 2 (COX2) metabolite, prostaglandin E2 (PGE2), which are recognized mediators of optimal bone formation. Hydrolysis of AA from membrane glycerophospholipids is catalyzed by phospholipases A2 (PLA2s). We reported that mice deficient in the Ca2+- independent PLA2beta (iPLA2ß), encoded by Pla2g6, exhibit a low bone phenotype, but the cause for this remains to be identified. Here, we examined the mechanistic and molecular roles of iPLA2ß in bone formation using bone marrow stromal cells and calvarial osteoblasts from WT and iPLA2ß-deficient mice, and the MC3T3-E1 osteoblast precursor cell line. Our data reveal that transcription of osteogenic factors (Bmp2, Alpl, and Runx2) and osteogenesis are decreased with iPLA2ß-deficiency. These outcomes are corroborated and recapitulated in WT cells treated with a selective inhibitor of iPLA2 ß (10 µM S-BEL), and rescued in iPLA2ß-deficient cells by additions of 10 µM PGE2. Further, under osteogenic conditions we find that PGE2 production is through iPLA2ß activity and that this leads to induction of Runx2 and iPLA2ß transcription. These findings reveal a strong link between osteogenesis and iPLA2ß-derived lipids and raise the intriguing possibility that iPLA2ß-derived PGE2 participates in osteogenesis and in the regulation of Runx2 and also iPLA2ß.


Assuntos
Células Secretoras de Insulina , Osteogênese , Animais , Osso e Ossos , Dinoprostona/farmacologia , Fosfolipases A2 do Grupo VI/genética , Camundongos , Fosfolipases A2
2.
Exp Cell Res ; 368(1): 67-74, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29689276

RESUMO

Little is known about the effects of combinatorial dietary compounds on the regulation of epigenetic mechanisms involved in breast cancer prevention. The human diet consists of a multitude of components, and there is a need to elucidate how certain compounds interact in collaboration. Withaferin A (WA), found in the Indian winter cherry and documented as a DNA methyltransferase (DNMT) inhibitor, and sulforaphane (SFN), a well-known histone deacetylase (HDAC) inhibitor found in cruciferous vegetables, are two epigenetic modifying compounds that have only recently been studied in conjunction. The use of DNMT and HDAC inhibitors to reverse the malignant expression of certain genes in breast cancer has shown considerable promise. Previously, we found that SFN + WA synergistically promote breast cancer cell death. Herein, we determined that these compounds inhibit cell cycle progression from S to G2 phase in MDA-MB-231 and MCF-7 breast cancer. Furthermore, we demonstrate that this unique combination of epigenetic modifying compounds down-regulates the levels of Cyclin D1 and CDK4, and pRB; conversely, the levels of E2F mRNA and tumor suppressor p21 are increased independently of p53. We find these events coincide with an increase in unrestricted histone methylation. We propose SFN + WA-induced breast cancer cell death is attributed, in part, to epigenetic modifications that result in the modulated expression of key genes responsible for the regulation of cancer cell senescence.


Assuntos
Ciclo Celular/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Isotiocianatos/farmacologia , Vitanolídeos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias da Mama/tratamento farmacológico , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/farmacologia , Humanos , Sulfóxidos
3.
Glia ; 66(5): 987-998, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29380422

RESUMO

Previously, we determined microRNA-31 (miR-31) is a noncoding tumor suppressive gene frequently deleted in glioblastoma (GBM); miR-31 suppresses tumor growth, in part, by limiting the activity of NF-κB. Herein, we expand our previous studies by characterizing the role of miR-31 during neural precursor cell (NPC) to astrocyte differentiation. We demonstrate that miR-31 expression and activity is suppressed in NPCs by stem cell factors such as Lin28, c-Myc, SOX2 and Oct4. However, during astrocytogenesis, miR-31 is induced by STAT3 and SMAD1/5/8, which mediate astrocyte differentiation. We determined miR-31 is required for terminal astrocyte differentiation, and that the loss of miR-31 impairs this process and/or prevents astrocyte maturation. We demonstrate that miR-31 promotes astrocyte development, in part, by reducing the levels of Lin28, a stem cell factor implicated in NPC renewal. These data suggest that miR-31 deletions may disrupt astrocyte development and/or homeostasis.


Assuntos
Astrócitos/metabolismo , Diferenciação Celular/fisiologia , MicroRNAs/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Células Cultivadas , Imunofluorescência , Immunoblotting , Hibridização In Situ , Camundongos Endogâmicos C57BL , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Xenopus laevis
4.
Development ; 142(4): 722-31, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25617436

RESUMO

Neural crest cells arise from the border of the neural plate and epidermal ectoderm, migrate extensively and differentiate into diverse cell types during vertebrate embryogenesis. Although much has been learnt about growth factor signals and gene regulatory networks that regulate neural crest development, limited information is available on how epigenetic mechanisms control this process. In this study, we show that Polycomb repressive complex 2 (PRC2) cooperates with the transcription factor Snail2/Slug to modulate neural crest development in Xenopus. The PRC2 core components Eed, Ezh2 and Suz12 are expressed in the neural crest cells and are required for neural crest marker expression. Knockdown of Ezh2, the catalytic subunit of PRC2 for histone H3K27 methylation, results in defects in neural crest specification, migration and craniofacial cartilage formation. EZH2 interacts directly with Snail2, and Snail2 fails to expand the neural crest domains in the absence of Ezh2. Chromatin immunoprecipitation analysis shows that Snail2 regulates EZH2 occupancy and histone H3K27 trimethylation levels at the promoter region of the Snail2 target E-cadherin. Our results indicate that Snail2 cooperates with EZH2 and PRC2 to control expression of the genes important for neural crest specification and migration during neural crest development.


Assuntos
Crista Neural/citologia , Crista Neural/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica no Desenvolvimento , Complexo Repressor Polycomb 2/genética , Ligação Proteica , Fatores de Transcrição/genética , Xenopus , Proteínas de Xenopus/genética
5.
J Neurooncol ; 132(2): 219-229, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28181105

RESUMO

Protein kinase CK2 is a ubiquitously expressed serine/threonine kinase composed of two catalytic subunits (α) and/or (α') and two regulatory (ß) subunits. The expression and kinase activity of CK2 is elevated in many different cancers, including glioblastoma (GBM). Brain tumor initiating cells (BTICs) are a subset of cells that are highly tumorigenic and promote the resistance of GBM to current therapies. We previously reported that CK2 activity promotes prosurvival signaling in GBM. In this study, the role of CK2 signaling in BTIC function was examined. We found that expression of CK2α was increased in CD133+ BTICs compared to CD133- cells within the same GBM xenolines. Treatment with CX-4945, an ATP-competitive inhibitor of CK2, led to reduced expression of Sox2 and Nestin, transcription factors important for the maintenance of stem cells. Similarly, inhibition of CK2 also reduced the frequency of CD133+ BTICs over the course of 7 days, indicating a role for CK2 in BTIC persistence and survival. Importantly, using an in vitro limiting dilution assay, we found that inhibition of CK2 kinase activity with CX-4945 or siRNA knockdown of the CK2 catalytic subunits reduced neurosphere formation in GBM xenolines of different molecular subtypes. Lastly, we found that inhibition of CK2 led to decreased EGFR levels in some xenolines, and combination treatment with CX-4945 and Gefitinib to inhibit CK2 and EGFR, respectively, provided optimal inhibition of viability of cells. Therefore, due to the integration of CK2 in multiple signaling pathways important for BTIC survival, CK2 is a promising target in GBM.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Antígeno AC133/metabolismo , Animais , Caseína Quinase II/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Feminino , Gefitinibe , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Naftiridinas/farmacologia , Fenazinas , Gravidez , Quinazolinas/farmacologia , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Neuroinflammation ; 12: 128, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26123499

RESUMO

BACKGROUND: In experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, mice genetically deficient in the transcription factor signal transducer and activator of transcription 4 (STAT4) are resistant to disease. In contrast, deletion or inhibition of the Th1-associated cytokines IL-12 or IFNγ which act upstream and downstream of STAT4, respectively, does not ameliorate disease. These discordant findings imply that STAT4 may act in a non-canonical role during EAE. Recently, STAT4 has been shown to regulate GM-CSF production by CD4 T cells and this cytokine is necessary for the induction of EAE. However, it is not known if STAT4 controls GM-CSF production by both Th1 and Th17 effector CD4 T cells. METHODS: This study utilized the MOG(35-55) peptide immunization model of EAE. Intracellular cytokine staining and novel mixed bone marrow chimeric mice were used to study the CD4 T cell-intrinsic role of STAT4 during disease. STAT4 chromatin-immunoprecipitation (ChIP-PCR) experiments were performed to show STAT4 directly interacts with the Csf2 gene loci. RESULTS: Herein, we demonstrate that STAT4 controls CD4 T cell-intrinsic GM-CSF production by both Th1 and Th17 CD4 T cells during EAE as well as in vitro. Importantly, we show that STAT4 interacts with the Csf2 locus in MOG(35-55)-activated effector CD4 T cells demonstrating direct modulation of GM-CSF. CONCLUSIONS: Overall, these studies illustrate a previously unrecognized role of STAT4 to regulate GM-CSF production by not only Th1 cells, but also Th17 effector CD4 T cell subsets during EAE pathogenesis. Critically, these data highlight for the first time that STAT4 is able to modulate the effector profile of Th17 CD4 T cell subsets, which redefines our current understanding of STAT4 as a Th1-centric factor.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator de Transcrição STAT4/metabolismo , Células Th1/metabolismo , Células Th17/metabolismo , Animais , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Peptídeos , Fator de Transcrição STAT4/deficiência , Fator de Transcrição STAT4/genética , Células Th1/patologia , Células Th17/patologia
7.
J Biol Chem ; 285(51): 39759-67, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20870728

RESUMO

Temozolomide (TMZ) is an oral alkylating agent used for the treatment of high-grade gliomas. Acquired chemoresistance is a severe limitation to this therapy with more than 90% of recurrent gliomas showing no response to a second cycle of chemotherapy. Efforts to better understand the underlying mechanisms of acquired chemoresistance to TMZ and potential strategies to overcome chemoresistance are, therefore, critically needed. TMZ methylates nuclear DNA and induces cell death; however, the impact on mitochondria DNA (mtDNA) and mitochondrial bioenergetics is not known. Herein, we tested the hypothesis that TMZ-mediated alterations in mtDNA and respiratory function contribute to TMZ-dependent acquired chemoresistance. Using an in vitro model of TMZ-mediated acquired chemoresistance, we report 1) a decrease in mtDNA copy number and the presence of large heteroplasmic mtDNA deletions in TMZ-resistant glioma cells, 2) remodeling of the entire electron transport chain with significant decreases of complexes I and V and increases of complexes II/III and IV, and 3) pharmacologic and genetic manipulation of cytochrome c oxidase, which restores sensitivity to TMZ-dependent apoptosis in resistant glioma cells. Importantly, human primary and recurrent pairs of glioblastoma multiforme (GBM) biopsies as well as primary and TMZ-resistant GBM xenograft lines exhibit similar remodeling of the ETC. Overall these results suggest that TMZ-dependent acquired chemoresistance may be due to a mitochondrial adaptive response to TMZ genotoxic stress with a major contribution from cytochrome c oxidase. Thus, abrogation of this adaptive response may reverse chemoresistance and restore sensitivity to TMZ, providing a strategy for improved therapeutic outcomes in GBM patients.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Dacarbazina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Glioma/metabolismo , Mitocôndrias/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Dacarbazina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Glioma/genética , Glioma/terapia , Humanos , Camundongos , Mitocôndrias/genética , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/genética , Temozolomida , Transplante Heterólogo
8.
Am J Physiol Lung Cell Mol Physiol ; 301(6): L899-907, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21926264

RESUMO

Chronic hypoxia activates transforming growth factor-ß (TGF-ß) signaling and leads to pulmonary vascular remodeling. Pharmacological activation of peroxisome proliferator-activated receptor-γ (PPAR-γ) has been shown to prevent hypoxia-induced pulmonary hypertension and vascular remodeling in rodent models, suggesting a vasoprotective effect of PPAR-γ under chronic hypoxic stress. This study tested the hypothesis that there is a functional interaction between TGF-ß/Smad signaling pathway and PPAR-γ in isolated pulmonary artery small muscle cells (PASMCs) under hypoxic stress. We observed that chronic hypoxia led to a dramatic decrease of PPAR-γ protein expression in whole lung homogenates (rat and mouse) and hypertrophied pulmonary arteries and isolated PASMCs. Using a transgenic model of mouse with inducible overexpression of a dominant-negative mutant of TGF-ß receptor type II, we demonstrated that disruption of TGF-ß pathway significantly attenuated chronic hypoxia-induced downregulation of PPAR-γ in lung. Similarly, in isolated rat PASMCs, antagonism of TGF-ß signaling with either a neutralizing antibody to TGF-ß or the selective TGF-ß receptor type I inhibitor SB431542 effectively attenuated hypoxia-induced PPAR-γ downregulation. Furthermore, we have demonstrated that TGF-ß1 treatment suppressed PPAR-γ expression in PASMCs under normoxia condition. Chromatin immunoprecipitation analysis showed that TGF-ß1 treatment significantly increased binding of Smad2/3, Smad4, and the transcriptional corepressor histone deacetylase 1 to the PPAR-γ promoter in PASMCs. Conversely, treatment with the PPAR-γ agonist rosiglitazone attenuated TGF-ß1-induced extracellular matrix molecule expression and growth factor in PASMCs. These data provide strong evidence that activation of TGF-ß/Smad signaling, via transcriptional suppression of PPAR-γ expression, mediates chronic hypoxia-induced downregulation of PPAR-γ expression in lung.


Assuntos
Regulação para Baixo , Hipóxia/metabolismo , Pulmão/irrigação sanguínea , Miócitos de Músculo Liso/metabolismo , PPAR gama/metabolismo , Artéria Pulmonar/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Hipóxia Celular , Movimento Celular , Células Cultivadas , Matriz Extracelular/metabolismo , Histona Desacetilase 1/metabolismo , Hipóxia/genética , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , PPAR gama/agonistas , PPAR gama/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Artéria Pulmonar/patologia , Ratos , Ratos Sprague-Dawley , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Transcrição Gênica , Fator de Crescimento Transformador beta/farmacologia
9.
J Neurooncol ; 102(3): 367-81, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21279667

RESUMO

Malignant gliomas are diffusively infiltrative and remain among the deadliest of all cancers. NF-κB is a transcription factor that mediates cell growth, migration and invasion, angiogenesis and resistance to apoptosis. Normally, the activity of NF-κB is tightly regulated by numerous mechanisms. However, in many cancers, NF-κB is constitutively activated and may function as a tumor promoter. Herein, we show that in gliomas, NF-κB is constitutively activated and the levels of cIAP2, Bcl-2, Bcl-xL and Survivin are elevated. These genes are regulated by NF-κB and can inhibit apoptosis. To understand the potential role of NF-κB p65 in suppressing apoptosis, we generated human glioma cell lines that inducibly express shRNA molecules specific for p65. We demonstrate that in the absence of p65, TNF-α induced cIAP2 expression is significantly reduced while the levels of Bcl-2, Bcl-xL and Survivin are not affected. These data suggest that of these genes, only cIAP2 is a direct target of p65, which was confirmed using RT-PCR and chromatin immunoprecipitation (ChIP) assays. By reducing the levels of p65 and/or cIAP2 levels, we demonstrate that the levels of RIP poly-ubiquitination are reduced, and that p65-deficient glioma cells are more sensitive to the cytotoxic effects of TNF-α. Specifically, in the presence of TNF-α glioma cells lacking p65 and/or cIAP2 showed cellular proliferation defects and underwent cell death. These data suggest that NF-κB and/or cIAP2 may be therapeutically relevant targets for the treatment of malignant gliomas.


Assuntos
Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/patologia , Proteínas Inibidoras de Apoptose/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Proteína 3 com Repetições IAP de Baculovírus , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Imunoprecipitação da Cromatina/métodos , Humanos , Fatores de Tempo , Ubiquitina-Proteína Ligases
10.
Arterioscler Thromb Vasc Biol ; 29(3): 289-95, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19221203

RESUMO

Estrogen has antiinflammatory and vasoprotective effects when administered to young women or experimental animals that appear to be converted to proinflammatory and vasotoxic effects in older subjects, particularly those that have been hormone free for long periods. Clinical studies have raised many important questions about the vascular effects of estrogen that cannot easily be answered in human subjects. Here we review cellular/molecular mechanisms by which estrogen modulates injury-induced inflammation, growth factor expression, and oxidative stress in arteries and isolated vascular smooth muscle cells, with emphasis on the role of estrogen receptors and the nuclear factor-kappaB (NFkappaB) signaling pathway, as well as evidence that these protective mechanisms are lost in aging subjects.


Assuntos
Envelhecimento/metabolismo , Doenças Cardiovasculares/prevenção & controle , Terapia de Reposição de Estrogênios/efeitos adversos , Estrogênios/metabolismo , Inflamação/prevenção & controle , Saúde da Mulher , Fatores Etários , Envelhecimento/imunologia , Animais , Artérias/lesões , Artérias/metabolismo , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/metabolismo , Quimiocinas/metabolismo , Quimiotaxia de Leucócito , Citocinas/metabolismo , Feminino , Humanos , Inflamação/etiologia , Inflamação/imunologia , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , NF-kappa B/metabolismo , Ovário/metabolismo , Estresse Oxidativo , Receptores de Estrogênio/metabolismo , Transdução de Sinais
11.
PLoS One ; 15(2): e0229077, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32069320

RESUMO

Epidermal growth factor receptor (EGFR) is a pro-tumorigenic receptor tyrosine kinase that facilitates growth for cancer cells that overexpress the receptor. Monoclonal anti-EGFR antibody Cetuximab (CTX) provides significant clinical benefit in patients with head and neck squamous cell carcinoma (HNSCC). Missense mutations in the ectodomain (ECD) of EGFR can be acquired under CTX treatment and mimic the effect of large deletions on spontaneous untethering and activation of the receptor. Little is known about the contribution of EGFR ECD mutations to EGFR activation and CTX resistance in HNSCC. We identified two concurrent non-synonymous missense mutations (G33S and N56K) mapping to domain I in or near the EGF binding pocket of the EGFR ECD in patient-derived HNSCC cells that were selected for CTX resistance through repeated exposure to the agent in an effort to mimic what may occur clinically. Structural modeling predicted that the G33S and N56K mutants would restrict adoption of a fully closed (tethered) and inactive EGFR conformation while not permitting association of EGFR with the EGF ligand or CTX. Binding studies confirmed that the mutant, untethered receptor displayed reduced affinity for both EGF and CTX but demonstrated sustained activation and presence at the cell surface with diminished internalization and sorting for endosomal degradation, leading to persistent downstream AKT signaling. Our results demonstrate that HNSCC cells can select for EGFR ECD mutations under CTX exposure that converge to trap the receptor in an open, ligand-independent, constitutively activated state. These mutants impede the receptor's competence to bind CTX possibly explaining certain cases of CTX treatment-induced or de novo resistance to CTX.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Cetuximab/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Antineoplásicos Imunológicos/uso terapêutico , Cetuximab/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Ligantes , Modelos Moleculares , Mutação de Sentido Incorreto , Cultura Primária de Células , Domínios Proteicos/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Células Tumorais Cultivadas
12.
J Interferon Cytokine Res ; 28(1): 13-23, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18370868

RESUMO

Interleukin-8 (IL-8) is a key component of the innate immune response because of its ability to recruit inflammatory cells to sites of inflammation. Although the effects of IL-8 are largely beneficial, aberrant expression of IL-8 is known to contribute to a number of pathologic states. Interferon-beta (IFN-beta), an antiviral cytokine, is known to inhibit the expression of IL-8, although the exact mechanism by which this occurs has yet to be elucidated. In this study, we dissect the role of each member of the IFN-stimulated gene factor 3 (ISGF3) signaling complex in contributing to IFN-beta inhibition of IL-8 gene expression. To date, no IFN-stimulated response element (ISRE) (the DNA binding target for ISGF3) has been identified within the promoter region of the IL-8 gene. We conclude, through use of cell lines deficient for ISGF3 components, that all three members of this complex, Stat1, Stat2, and IFN regulatory factor-9 (IRF-9), are required for IFN-beta-mediated inhibition of IL-8 expression. In contrast to positive signaling by ISGF3 to activate gene expression, we find that the transactivation domains of Stat1 and Stat2 are not essential to IFN-beta inhibition of IL-8. Taken together, these data define the role of the ISGF3 members in IFN-beta inhibitory signaling.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Interferon beta/farmacologia , Interleucina-8/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , Linhagem Celular , Humanos , Interleucina-8/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT1/deficiência , Fator de Transcrição STAT2/química , Acetato de Tetradecanoilforbol/farmacologia
13.
Mol Cancer Ther ; 17(5): 921-930, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29592880

RESUMO

HER2-targeted therapies, such as trastuzumab, have increased the survival rates of HER2+ breast cancer patients. However, despite these therapies, many tumors eventually develop resistance to these therapies. Our lab previously reported an unexpected sensitivity of HER2+ breast cancer cells to poly (ADP-ribose) polymerase inhibitors (PARPi), agents that target homologous recombination (HR)-deficient tumors, independent of a DNA repair deficiency. In this study, we investigated whether HER2+ trastuzumab-resistant (TR) breast cancer cells were susceptible to PARPi and the mechanism behind PARPi induced cytotoxicity. We demonstrate that the PARPi ABT-888 (veliparib) decreased cell survival in vitro and tumor growth in vivo of HER2+ TR breast cancer cells. PARP-1 siRNA confirmed that cytotoxicity was due, in part, to PARP-1 inhibition. Furthermore, PARP-1 silencing had variable effects on the expression of several NF-κB-regulated genes. In particular, silencing PARP-1 inhibited NF-κB activity and reduced p65 binding at the IL8 promoter, which resulted in a decrease in IL8 mRNA and protein expression. Our results provide insight in the potential mechanism by which PARPi induces cytotoxicity in HER2+ breast cancer cells and support the testing of PARPi in patients with HER2+ breast cancer resistant to trastuzumab. Mol Cancer Ther; 17(5); 921-30. ©2018 AACR.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Trastuzumab/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Antineoplásicos Imunológicos/farmacologia , Benzimidazóis/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Receptor ErbB-2/metabolismo
14.
FEBS J ; 274(24): 6456-68, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18028425

RESUMO

Matrix metalloproteinase-9 (MMP-9) displays a preference for a broad range of substrates including extracellular matrix proteins and cytokines. MMP-9 plays an important role in physiological processes, as well as in inflammatory diseases and numerous cancers. Interferon-beta is a pleiotropic cytokine with antiviral, antiproliferative and immunomodulatory activities. Interferon-beta positively regulates gene expression, predominantly through the Janus kinase-signal transducer and activator of transcription (STAT) pathway. However, little is known about the mechanisms used by interferon-beta to negatively regulate gene expression. In the present study, we show that interferon-beta inhibits MMP-9 gene expression at the transcriptional level. Using cell lines deficient in three components of the interferon-beta-activated interferon-stimulated gene factor 3 (ISGF3) complex (i.e. STAT-1, STAT-2 and interferon regulatory factor 9), the results of our study indicate that all three members are required for interferon-beta inhibition. Chromatin immunoprecipitation assays demonstrate that interferon-beta reduces recruitment of transcriptional activators and coactivators, such as nuclear factor kappa B p65, Sp1, CREB-binding protein and p300, to the MMP-9 promoter, and decreases the degree of histone acetylation at the MMP-9 promoter. This occurs in the absence of an association of the ISGF3 complex with the MMP-9 promoter. Taken together, these data define the role of interferon-beta and the ISGF3 members in suppressing MMP-9 gene expression.


Assuntos
Fator Gênico 3 Estimulado por Interferon/metabolismo , Interferon beta/farmacologia , Metaloproteinase 9 da Matriz/metabolismo , Sítios de Ligação/genética , Linhagem Celular Tumoral , Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Immunoblotting , Fator Gênico 3 Estimulado por Interferon/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Luciferases/genética , Luciferases/metabolismo , Metaloproteinase 9 da Matriz/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Ativação Transcricional/genética , Transfecção , Tirosina/metabolismo
15.
Mol Cell Biol ; 24(2): 487-501, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14701724

RESUMO

p73, a p53 family protein, shares significant sequence homolog and functional similarity with p53. However, unlike p53, p73 has at least seven alternatively spliced isoforms with different carboxyl termini (p73alpha-eta). Moreover, the p73 gene can be transcribed from a cryptic promoter located in intron 3, producing seven more proteins (DeltaNp73alpha-eta). DeltaNp73, which does not contain the N-terminal activation domain in p73, has been thought to be transcriptionally inactive and dominant negative over p53 or p73. To systemically analyze the activity of the DeltaN variant, we generated stable cell lines, which inducibly express DeltaNp73alpha, DeltaNp73beta, and various DeltaNp73beta mutants by using the tetracycline-inducible expression system. Surprisingly, we found that DeltaNp73beta is indeed active in inducing cell cycle arrest and apoptosis. Importantly, we found that, when DeltaNp73beta is expressed at a physiologically relevant level, it is capable of suppressing cell growth. We then demonstrated that these DeltaNp73beta activities are not cell type specific. We showed that the 13 unique residues at the N terminus are required for DeltaNp73beta to suppress cell growth. We also found that, among the 13 residues, residues 6 to 10 are critical to DeltaNp73beta function. Furthermore, we found that DeltaNp73beta is capable of inducing some p53 target genes, albeit to a lesser extent than does p73beta. Finally, we found that the 13 unique residues, together with the N-terminal PXXP motifs, constitute a novel activation domain. Like DeltaNp73beta, DeltaNp73gamma is active in transactivation. However, unlike DeltaNp73beta, DeltaNp73alpha is inactive in suppressing cell growth. Our data, together with others' previous findings, suggest that DeltaNp73beta may have distinct functions under certain cellular circumstances.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Inibidores do Crescimento/genética , Inibidores do Crescimento/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Ativação Transcricional , Processamento Alternativo , Motivos de Aminoácidos , Apoptose , Sequência de Bases , Ciclo Celular , Linhagem Celular , DNA Complementar/genética , Proteínas de Ligação a DNA/química , Genes Supressores de Tumor , Inibidores do Crescimento/química , Humanos , Mutagênese , Proteínas Nucleares/química , Plasmídeos/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína Tumoral p73 , Proteínas Supressoras de Tumor
16.
Mol Cancer Res ; 15(3): 340-347, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28031413

RESUMO

HER2+ breast tumors have been shown to express elevated levels of PARP1 protein. Yet, the mechanism by which PARP1 is upregulated in HER2+ breast cancer is unknown. Here, knockdown of HER2 (ERBB2) in HER2+ breast cancer cells resulted in a reduction in PARP1 protein. Conversely, ectopic overexpression of HER2 in a non-HER2-overexpressing cell line resulted in increased PARP1 protein levels. Alterations in HER2 expression had no significant effect on PARP1 transcript levels. Instead, HER2 mRNA status was inversely correlated with let-7a miRNA levels in breast cancer cells. Ectopic expression of let-7a miRNA resulted in downregulation of PARP1 protein, whereas expression of the let-7a anti-miRNA increased PARP1 protein. Furthermore, luciferase assays demonstrate that let-7a regulates PARP1 via its 3'UTR. Importantly, let-7a was significantly lower in human HER2+ breast tumors compared with HER2- breast tumors and inversely correlated with PARP1 protein levels. Finally, HER2+ breast cancer cells exhibited similar cytotoxicity to ectopic let-7a expression as the PARP inhibitor veliparib (ABT-888). Collectively, these results reveal that increased PARP1 expression in HER2+ breast cancers is regulated by the let-7a miRNA, and that let-7a is a potential strategy to suppress PARP1 activity.Implications: This study reports the novel findings that HER2 increases PARP1 protein via suppression of the let-7a miRNA, which regulates the PARP1 3'-UTR. Moreover, HER2 status correlates with high PARP1 and low let-7a in breast cancer clinical specimens. Mol Cancer Res; 15(3); 340-7. ©2016 AACR.


Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , MicroRNAs/genética , Poli(ADP-Ribose) Polimerase-1/biossíntese , Receptor ErbB-2/biossíntese , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Feminino , Humanos , MicroRNAs/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Receptor ErbB-2/genética , Transfecção , Regulação para Cima
17.
Oncotarget ; 8(11): 18031-18049, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28160553

RESUMO

Glioblastoma is the most common and aggressive malignant brain tumor in adults. The existence of glioblastoma stem cells (GSCs) or stem-like cells (stemloids) may account for its invasiveness and high recurrence. Rac proteins belong to the Rho small GTPase subfamily which regulates cell movement, proliferation, and survival. To investigate whether Rac proteins can serve as therapeutic targets for glioblastoma, especially for GSCs or stemloids, we examined the potential roles of Rac1, Rac2 and Rac3 on the properties of tumorspheres derived from glioblastoma cell lines. Tumorspheres are thought to be glioblastoma stem-like cells. We showed that Rac proteins promote the STAT3 and ERK activation and enhance cell proliferation and colony formation of glioblastoma stem-like cells. Knockdown of Rac proteins reduces the expression of GSC markers, such as CD133 and Sox2. The in vivo effects of Rac proteins in glioblastoma were further studied in zebrafish and in the mouse xenotransplantation model. Knocking-down Rac proteins abolished the angiogenesis effect induced by the injected tumorspheres in zebrafish model. In the CD133+-U373-tumorsphere xenotransplanted mouse model, suppression of Rac proteins decreased the incidence of tumor formation and inhibited the tumor growth. Moreover, knockdown of Rac proteins reduced the sphere forming efficiency of cells derived from these tumors. In conclusion, not only Rac1 but also Rac2 and 3 are important for glioblastoma tumorigenesis and can serve as the potential therapeutic targets against glioblastoma and its stem-like cells.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Glioblastoma/enzimologia , Xenoenxertos , Humanos , Immunoblotting , Camundongos , Reação em Cadeia da Polimerase , Peixe-Zebra
18.
JCI Insight ; 2(24)2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29263302

RESUMO

Tumor microenvironments can promote stem cell maintenance, tumor growth, and therapeutic resistance, findings linked by the tumor-initiating cell hypothesis. Standard of care for glioblastoma (GBM) includes temozolomide chemotherapy, which is not curative, due, in part, to residual therapy-resistant brain tumor-initiating cells (BTICs). Temozolomide efficacy may be increased by targeting carbonic anhydrase 9 (CA9), a hypoxia-responsive gene important for maintaining the altered pH gradient of tumor cells. Using patient-derived GBM xenograft cells, we explored whether CA9 and CA12 inhibitor SLC-0111 could decrease GBM growth in combination with temozolomide or influence percentages of BTICs after chemotherapy. In multiple GBMs, SLC-0111 used concurrently with temozolomide reduced cell growth and induced cell cycle arrest via DNA damage in vitro. In addition, this treatment shifted tumor metabolism to a suppressed bioenergetic state in vivo. SLC-0111 also inhibited the enrichment of BTICs after temozolomide treatment determined via CD133 expression and neurosphere formation capacity. GBM xenografts treated with SLC-0111 in combination with temozolomide regressed significantly, and this effect was greater than that of temozolomide or SLC-0111 alone. We determined that SLC-0111 improves the efficacy of temozolomide to extend survival of GBM-bearing mice and should be explored as a treatment strategy in combination with current standard of care.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Encefálicas/prevenção & controle , Glioblastoma/prevenção & controle , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , DNA de Neoplasias/genética , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Compostos de Fenilureia/administração & dosagem , Compostos de Fenilureia/farmacologia , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacologia , Temozolomida/administração & dosagem , Temozolomida/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Oncogene ; 21(8): 1285-94, 2002 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-11850848

RESUMO

Alternative splicing or expression from an alternate promoter can produce variants of a gene. To determine whether the p21(Waf1/Cip1) locus is regulated by these mechanisms, we searched for and found two transcripts, p21B and p21C, that are expressed from an alternate promoter in the first intron of the p21 gene. While p21C encodes the p21 cyclin-dependent kinase inhibitor, p21B encodes a novel protein and the transcript is ubiquitously expressed in 16 human tissues tested. Like p21, both p21B and p21C are induced by DNA damage, p53, and other p53 family members through a proximal p53 response element in the promoter of p21B and p21C. However, unlike p21, which induces cell cycle arrest, we found that overexpression of p21B induces apoptosis. These findings indicate that the p21 locus expresses at least two structurally distinct, but functionally related, variants of the p21 gene from discrete promoters.


Assuntos
Processamento Alternativo/genética , Ciclinas/química , Ciclinas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Sequência de Aminoácidos , Apoptose , Sequência de Bases , Camptotecina/farmacologia , Divisão Celular , Inibidor de Quinase Dependente de Ciclina p21 , Ciclinas/genética , Dano ao DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Éxons/genética , Genes Supressores de Tumor , Humanos , Íntrons/genética , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elementos de Resposta/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Proteína Tumoral p73 , Proteínas Supressoras de Tumor
20.
Oncogene ; 22(28): 4333-47, 2003 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-12853970

RESUMO

p73, a p53 family member, is highly similar to p53 in both structure and function. Like p53, the p73 protein contains an N-terminal activation domain, a DNA-binding domain, a tetramerization domain, and several PXXP motifs. Previously, we and others have shown that some functional domains in p53, such as the DNA-binding and tetramerization domains, are required for inducing both cell cycle arrest and apoptosis whereas others, such as the second activation domain, the proline-rich domain, and the C-terminal basic domain, are only required for inducing apoptosis. To determine the activity of p73 functional domains, we have generated stable inducible cell lines that express p73beta and various mutants deficient in one or more functional domains. We found that in addition to the DNA-binding domain, p73-mediated growth suppression requires the N-terminal activation domain and the tetramerization domain. However, unlike p53, p73-mediated apoptosis does not require the region adjacent to the activation domain or the entire C-terminal region. Interestingly, while the N- or the C-terminal PXXP motifs are dispensable for p73 function, deletion of both the N- and the C-terminal PXXP motifs renders p73 inactive in transactivation. In addition, we found that substitution of two conserved tandem hydrophobic residues with two hydrophilic ones, which can abrogate the activity of the first activation domain in p53, has no effect on p73 transcriptional activity. Together, we showed that the p73 protein has its own unique determinants for transactivation and growth suppression.


Assuntos
Proteínas de Ligação a DNA/química , Inibidores do Crescimento/química , Proteínas Nucleares/química , Ativação Transcricional , Motivos de Aminoácidos , Apoptose , Linhagem Celular , Proteínas de Ligação a DNA/fisiologia , Genes Supressores de Tumor , Inibidores do Crescimento/fisiologia , Humanos , Sinais de Localização Nuclear , Proteínas Nucleares/fisiologia , Proteína Tumoral p73 , Proteínas Supressoras de Tumor
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa