Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Bioorg Chem ; 114: 105157, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34328855

RESUMO

A new library of hybrid compounds that combine the functional parts of glibenclamide and pioglitazone was designed and developed. Compounds were screened for their antihyperglycemic effects on the glucose tolerance curve. This approach provided a single molecule that optimizes the pharmacological activities of two drugs used for the treatment of diabetes mellitus type 2 (DM2) and that have distinct biological activities, potentially minimizing the adverse effects of the original drugs. From a total of 15 compounds, 7 were evaluated in vivo; the compound 2; 4- [2- (2-phenyl-4-oxo-1,3-thiazolidin-3-yl) ethyl] benzene-1-sulfonamide (PTEBS) was selected to study its mechanism of action on glucose and lipid homeostasis in acute and chronic animal models related to DM2. PTEBS reduced glycemia and increased serum insulin in hyperglycemic rats, and elevated in vitro insulin production from isolated pancreatic islets. This compound increased the glycogen content in hepatic and muscular tissue. Moreover, PTEBS stimulated the uptake of glucose in soleus muscle through a signaling pathway similar to that of insulin, stimulating translocation and protein synthesis of glucose transporter 4 (GLUT4). PTEBS was effective in increasing insulin sensitivity in resistance rats by stimulating increased muscle glucose uptake, among other mechanisms. In addition, this compound reduced total triglycerides in a tolerance test to lipids and reduced advanced glycation end products (AGES), without altering lactate dehydrogenase (LDH) activity. Thus, we suggest that PTEBS may have similar effects to the respective prototypes, which may improve the therapeutic efficacy of these molecules and decrease adverse effects in the long-term.


Assuntos
Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glibureto/farmacologia , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/farmacologia , Pioglitazona/farmacologia , Animais , Relação Dose-Resposta a Droga , Glibureto/química , Homeostase/efeitos dos fármacos , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Resistência à Insulina , Estrutura Molecular , Pioglitazona/química , Ratos , Relação Estrutura-Atividade
2.
Bioorg Chem ; 116: 105315, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34496319

RESUMO

Chalcones and their derivatives have been described as promising compounds with antiproliferative activity against leukemic cells. This study aimed to investigate the cytotoxic effect of three synthetic chalcones derived from 1-naphthylacetophenone (F07, F09, and F10) in acute leukemia cell lines (K562 and Jurkat) and examine the mechanisms of cell death induced by these compounds. The three compounds were cytotoxic to K562 and Jurkat cells, with IC50 values ranging from 1.03 to 31.66 µM. Chalcones induced intrinsic and extrinsic apoptosis, resulting in activation of caspase-3 and DNA fragmentation. F07, F09, and F10 were not cytotoxic to human peripheral blood mononuclear cells, did not produce any significant hemolytic activity, and did not affect platelet aggregation after ADP stimulation. These results, combined with calculations of molecular properties, suggest that chalcones F07, F09, and F10 are promising molecules for the development of novel antileukemic drugs.


Assuntos
Acetofenonas/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Chalconas/farmacologia , Acetofenonas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Chalconas/síntese química , Chalconas/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
3.
J Pharm Pharm Sci ; 24: 23-36, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33735604

RESUMO

BACKGROUND: Current therapies for acute leukemias (ALs) are associated with severe adverse reactions and high relapse rates, which makes the search for new antileukemic agents a necessity. Therefore, the aim of this study was to evaluate the effects of a new sulfonamide, S1, in AL cells K562 and Jurkat. METHODS: The cytotoxic activity of S1 was assessed using MTT method. The involvement of apoptosis in the mechanism of cell death was assessed by flow cytometry and fluorescence microscopy. RESULTS: Our results demonstrated that S1 induced morphological changes suggestive of apoptosis in both K562 and Jurkat cells. Additionally, S1 was not cytotoxic to normal erythrocytes and mononuclear cells and had a highly selective cytotoxicity for AL lineages. The mechanisms of cell death induced by S1 in K562 cells involves cell cycle arrest at G2/M phase and the activation of both extrinsic and intrinsic apoptosis, with an increased FasR and AIF expression and the loss of mitochondrial potential. As for Jurkat, we observed cell cycle blockade at G0/G1 phase, phosphatidylserine exposure and the involvement of intrinsic apoptosis only, with mitochondrial potential loss and a reduced expression of Survivin.  Although sulfonamide S1 did not altered Bcl-2 and Bax expression in AL cell lines, it was able to activate caspase-3 in K562 cells. CONCLUSION: Our results suggest that sulfonamide S1 may be a promising candidate for the development of new drugs for the treatment of ALs.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Derivados de Benzeno/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Sulfonamidas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Derivados de Benzeno/síntese química , Derivados de Benzeno/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células Jurkat , Células K562 , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Estrutura Molecular , Sulfonamidas/síntese química , Sulfonamidas/química
4.
J Cell Physiol ; 234(7): 10138-10147, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30417369

RESUMO

AIM: To investigate the mechanism of action of sulfonyl(thio)urea derivative (SD) on glycemia and on insulin secretion in pancreatic islets. METHODS: Wistar rats were divided into hyperglycemic control group, rats received 4 g/kg body weight glucose plus sitagliptin 10 mg/kg (p.o.); hyperglycemic plus SD 10 mg/kg (p.o.); hyperglycemic plus SD plus sitagliptin. Blood was collected before glucose overloading (zero time), and at 15, 30, 60, and 180 min after glucose, from the afore mentioned groups for glycemia and glucagon-like peptide 1 (GLP-1) measurements and intestinal disaccharidases activity. Pancreatic islets were isolated for the calcium influx and insulin secretion in in vitro studies. RESULTS: SD reduced glycemia and increased GLP-1 secretion, while inhibited sucrase and lactase activity. This SD (1.0 and 10.0 µM) stimulated calcium influx in a similar percentile to that of glibenclamide, and in a nonsynergic manner. In addition, the trigger effect of SD on calcium influx was through the K+ -ATP-dependent channels, and partially by activating voltage-dependent K + channels and voltage-dependent calcium channels. Furthermore, SD-stimulated Na + and Ca 2+ entry, induced by the transient receptor potential ankyrin 1 and by modulation of Na + /Ca 2+ exchange. The activation of these pathways by SD culminated in in vitro insulin secretion, reinforcing the critical role of K + -ATP channels in the secretagogue effect of SD. CONCLUSIONS: SD diminish glycemia by inducing GLP-1 secretion and inhibiting disaccharidases. To our knowledge, this is the first report of an insulin secretagogue effect of SD that is mediated by potassium and calcium, as well as sodium, signal transduction.


Assuntos
Hipoglicemiantes/farmacologia , Secreção de Insulina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Compostos de Sulfonilureia/farmacologia , Animais , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Hiperglicemia/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Ratos , Ratos Wistar , Fosfato de Sitagliptina/farmacologia , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos , Canais de Sódio Disparados por Voltagem/metabolismo
5.
Bioorg Med Chem ; 27(2): 375-382, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30579801

RESUMO

Malignant neoplasms are one of the leading causes of death worldwide and hematologic malignancies, including acute leukemia (AL) is one of the most relevant cancer types. Current available chemotherapeutics are associated with high morbidity and mortality rates, therefore, the search for new molecules with antitumor activity, specific and selective for neoplastic cells, became a great challenge for researchers in the oncology field. As pyrazolines stand out in the literature for their great variety of biological activities, the aim of this study was to synthesize and evaluate the antileukemic activity of five new pyrazoline derivatives. All pyrazolines showed adequate physicochemical properties for a good oral bioavailability. The two unpublished and most effective pyrazoline derivatives have been selected for further experiments. These compounds are highly selective for leukemic cells when compared to non-neoplastic cells and did not cause lysis on human red blood cells. Additionally, selected pyrazolines induced cell cycle arrest at G0/G1 phase and decreased cell proliferation marker KI67. Apoptotic cell death induced by selected pyrazolines was confirmed by morphological analysis, assessment of phosphatidylserine residue exposure and DNA fragmentation. Several factors indicate that both intrinsic and extrinsic apoptosis occurred. These were: increased FasR expression; the predominance of Bax in relation to Bcl-2; the loss of mitochondrial membrane potential; AIF release; decreased expression of survivin (an antiapoptotic protein); and the activation of caspase-3. The selected pyrazolines were also found to be cytotoxic against neoplastic cells collected from the peripheral blood and bone marrow of patients with different subtypes of acute leukemia.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pirazóis/farmacologia , Doença Aguda , Antineoplásicos/síntese química , Antineoplásicos/química , Fator de Indução de Apoptose/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Leucemia/tratamento farmacológico , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pirazóis/síntese química , Pirazóis/química , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Survivina/metabolismo , Proteína X Associada a bcl-2/metabolismo
6.
Bioorg Med Chem ; 26(21): 5742-5750, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30389409

RESUMO

Mycobacterium tuberculosis secretes two protein tyrosine phosphatases as virulence factors, PtpA and PtpB. Inhibition studies of these enzymes have shown significant attenuation of the M. tuberculosis growth in vivo. As PtpA mediates many effects on the regulation of host signaling ensuring the intracellular survival of the bacterium we report, for the first time, thiosemicarbazones as potential novel class of PtpA inhibitors. Several compounds were synthesized and biologically evaluated, revealing interesting results. Enzyme kinetic assays showed that compounds 5, 9 and 18 are non-competitive inhibitors of PtpA, with Ki values ranging from 1.2 to 5.6 µM. Modeling studies clarified the structure-activity relationships observed in vitro and indicated a possible allosteric binding site in PtpA structure. To the best of our knowledge, this is the first disclosure of potent non-competitive inhibitors of PtpA with great potential for future studies and development of analogues.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Tiossemicarbazonas/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Proteínas de Bactérias/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Cinética , Simulação de Acoplamento Molecular , Estrutura Molecular , Proteínas Tirosina Fosfatases/química , Relação Estrutura-Atividade , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/química
7.
Can J Physiol Pharmacol ; 95(5): 548-563, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28177693

RESUMO

Pyrazoline is an important 5-membered nitrogen heterocycle that has been extensively researched. Ten derivatives were synthesized and tested for antileukemic effects on 2 human acute leukemia cell lines, K562 and Jurkat. The most cytotoxic of these derivatives, compound 21, was chosen for investigation of cytotoxicity mechanisms. The results obtained with selectivity calculations revealed that compound 21 is more selective for acute leukemia (K562 and Jurkat cell lines) than for other tumor cell lines. Moreover, compound 21 was not cytotoxic to normal cell lines, indicating a potential use in clinical tests. Compound 21 caused a significant cell cycle arrest in the S-phase in Jurkat cells and increased the proportion of cells in the sub G0/G1 phase in both cell lines. Cells treated with compound 21 demonstrated morphological changes characteristic of apoptosis in the EB/AO assay, confirmed by externalization of phosphatidylserine by the annexin V - fluorescein isothiocyanate method and by DNA fragmentation. An investigation of cytotoxicity mechanisms suggests the involvement of an intrinsic apoptosis pathway due to mitochondrial damage and an increase in the ratio of mitochondrial Bax/Bcl2. Pyrazoline 21 obeyed Lipinski's "rule of five" for drug-likeness. Based on these preliminary results, the antileukemic activity of compound 21 makes it a potential anticancer agent.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Leucemia/patologia , Pirazóis/química , Pirazóis/farmacologia , Antineoplásicos/farmacocinética , Coagulação Sanguínea/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Simulação por Computador , Fragmentação do DNA/efeitos dos fármacos , Humanos , Células Jurkat , Células K562 , Pirazóis/farmacocinética , Transdução de Sinais/efeitos dos fármacos
8.
J Cell Biochem ; 117(5): 1199-209, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26447772

RESUMO

To characterize the role and the mechanism of action of (2E)-N'-(1'-naphthyl)-3,4,5-trimethoxybenzohydrazide (BZD) on incretin secretion, glucose uptake in skeletal muscle and α-glucosidase activity on intestine, targets for glucose homeostasis. It was assayed on glucose tolerance test (GTT) to analyze GLP-1 secretion and the activity of DPP-4 enzyme in vitro. In skeletal muscle, mechanism of action on glucose uptake was carried out by in vitro experiments. The activity of intestinal disaccharidases was performed after in vivo and in vitro experiments. The compound improved the glucose tolerance around 30%, 25%, and 20% at 15, 30, and 60 min, respectively and potentiated the sitagliptin effect, an inhibitor of the enzyme that removes GLP-1, about 50, 45, and 54% at 15, 30, and 60 min, respectively. Additionally, BZD did not modify the activity of DPP-4 enzyme. The acute effect of BZD on glucose uptake is mediated by increasing GLUT4 expression (around 140%) and its translocation to the plasma membrane in soleus muscle. The genomic effect as well as GLUT4 translocation involve the activation of PI-3K and MAPK pathways and require the microtubules integrity to the complete stimulatory effect of this compound on glucose uptake. Beyond, BZD acts in an alternative target to ameliorate glycaemia, intestinal disaccharidases. In a whole, these data point an incretino- and insulinomimetic effect of the compound for glycemic control.


Assuntos
Anisóis/farmacologia , Glicemia/metabolismo , Homeostase/efeitos dos fármacos , Hidrazonas/farmacologia , Incretinas/metabolismo , Insulina/metabolismo , Animais , Dipeptidil Peptidase 4/metabolismo , Dissacaridases/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Glucose/farmacocinética , Teste de Tolerância a Glucose , Transportador de Glucose Tipo 4/metabolismo , Hipoglicemiantes/farmacologia , Immunoblotting , Secreção de Insulina , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/enzimologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos Wistar
9.
Anticancer Drugs ; 27(8): 738-47, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27337110

RESUMO

We have previously reported the cytotoxic effects of chalcone A1, derived from 1-naphthaldehyde, in leukemia cell lines. On the basis of these findings, the main aim of this study was to elucidate some of the molecular mechanisms involved in apoptosis induced by chalcone A1 toward K562 and Jurkat cells. In both cell lines, chalcone A1 decreased the mitochondrial membrane potential, increased the expression of Bax proapoptotic protein, and decreased the expression of Bcl-2 antiapoptotic protein (resulting in the inversion of the Bcl-2/Bax ratio), which indicates the involvement of the intrinsic pathway. In addition, chalcone A1 increased the expression of FasR in Jurkat cells, which also indicates the involvement of the extrinsic pathway in this cell line. The results also showed an increased expression of effector caspase-3 and cleaved PARP-1 and a decreased expression of IAP protein survivin, which are consistent with apoptotic cell death. The decreased expression of Ki67 suggests that the mechanism involved in cell death induced by chalcone A1 also involves a decrease in cell proliferation. In ex-vivo experiments, chalcone A1 reduced the cell viability of blast cells collected from eight patients with different types of acute leukemia, confirming the cytotoxicity results found in vitro. The results obtained so far are very promising and further studies need to be carried out so that chalcone A1 can be used as a prototype for the development of new antileukemia agents.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Chalconas/farmacologia , Leucemia/sangue , Antineoplásicos/química , Fator de Indução de Apoptose/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Células Jurkat , Células K562 , Leucemia/tratamento farmacológico , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Survivina , Proteína X Associada a bcl-2/metabolismo
10.
J Enzyme Inhib Med Chem ; 30(2): 299-307, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24964346

RESUMO

Falcipain-2 (FP-2) is a key cysteine protease from the malaria parasite Plasmodium falciparum. Many previous studies have identified FP-2 inhibitors; however, none has yet met the criteria for an antimalarial drug candidate. In this work, we assayed an in-house library of non-peptidic organic compounds, including (E)-chalcones, (E)-N'-benzylidene-benzohydrazides and alkyl-esters of gallic acid, and assessed the activity toward FP-2 and their mechanisms of inhibition. The (E)-chalcones 48, 54 and 66 showed the lowest IC50 values (8.5 ± 0.8 µM, 9.5 ± 0.2 µM and 4.9 ± 1.3 µM, respectively). The best inhibitor (compound 66) demonstrated non-competitive inhibition, and using mass spectrometry and fluorescence spectroscopy assays, we suggest a potential allosteric site for the interaction of this compound, located between the catalytic site and the hemoglobin binding arm in FP-2. We combined structural biology tools and mass spectrometry to characterize the inhibition mechanisms of novel compounds targeting FP-2.


Assuntos
Antimaláricos/síntese química , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/síntese química , Descoberta de Drogas/métodos , Plasmodium falciparum/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Antimaláricos/química , Antimaláricos/farmacologia , Cisteína Endopeptidases/genética , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Escherichia coli/genética , Estrutura Molecular , Plasmodium falciparum/enzimologia , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
Intervirology ; 57(6): 375-83, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25359160

RESUMO

OBJECTIVE: To study the anti-herpes simplex virus (HSV) activity of a (1→6)-(1→3)-ß-D-glucan isolated from Agaricus brasiliensis fruiting bodies (FR) as well as its chemically sulfated derivative (FR-S). METHODS: The antiherpetic activity and mechanism of action was studied by viral plaque assay applying different methodological strategies. RESULTS: Although FR presented no in vitro antiherpetic action at 1 mg/ml, FR-S displayed promising anti-HSV-1 and anti-HSV-2 activities in both simultaneous and postinfection treatments, resulting in selectivity indices (CC50/EC50) higher than 393. FR-S had no virucidal effect, but significantly suppressed HSV-1 (EC50 = 0.32 µg/ml) and HSV-2 (EC50 = 0.10 µg/ml) adsorption. FR-S was less effective on adsorption inhibition of mutant virus strains devoid of gC (HSV-1 gC⁻39 and HSV-2 gCneg1), indicating a possible interaction with this glycoprotein. The reduction of viral adsorption upon cell pretreatment with FR-S also suggests its interaction with cellular components. FR-S inhibited HSV-1 (EC50 = 8.39 µg/ml) and HSV-2 (EC50 = 2.86 µg/ml) penetration more efficiently than heparin. FR-S reduced HSV-1 and HSV-2 cell-to-cell spread. A synergic effect between FR-S and acyclovir was also detected. CONCLUSIONS: FR-S displays an interesting mechanism of antiviral action and represents a promising candidate for the treatment and/or prevention of herpetic infections, to be used as a single therapeutic agent or in combination with acyclovir.


Assuntos
Agaricus/química , Antivirais/química , Antivirais/farmacologia , Carpóforos/química , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Polissacarídeos/farmacologia , beta-Glucanas/farmacologia , Aciclovir/farmacologia , Animais , Brasil , Chlorocebus aethiops , Sinergismo Farmacológico , Polissacarídeos/química , Células Vero , Ensaio de Placa Viral , beta-Glucanas/química , beta-Glucanas/isolamento & purificação
12.
Chem Res Toxicol ; 26(12): 1904-16, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24304350

RESUMO

Cyclic imides are known for their antitumor activity, especially the naphthalimide derivatives, such as Mitonafide and Amonafide. Recently, we have demonstrated the cytotoxic effect of a series of naphthalimide derivatives against B16F10 melanoma cells. On the basis of this fact, we have developed a study starting from the synthesis of different cyclic imides and the evaluation of their cytotoxic properties on human acute leukemia cells (K562 and Jurkat). Initially, a screening test was conducted to select the compound with the best cytotoxic effect, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. After this selection, structural modifications were performed in the most active compound to obtain five more derivatives. All compounds presented a good cytotoxic effect. The results of cell cycle analysis, fluorescence microscopy, and Annexin V-FITC assay confirmed that the cells observed in the sub-G0/G1 phase were undergoing apoptosis. From this set of results, cyclic imides 8, 10, and 12 were selected for the evaluation of the mechanisms involved in the apoptotic process. The results demonstrate the involvement of the intrinsic pathway of apoptosis, evidenced by the reduction in mitochondrial potential, an increase in the level of AIF protein expression, a decreased level of expression of anti-apoptotic Bcl-2 protein, and an increased level of expression of pro-apoptotic protein Bax in both K562 and Jurkat cells treated with cyclic imides (8, 10, and 12). Furthermore, cyclic imides 8 and 10 caused an increase in the level of Fas expression in Jurkat cells, indicating the additional involvement of the extrinsic apoptosis pathway. The compounds (8, 10, and 12) also caused a decreased level of expression of anti-apoptotic protein survivin. The biological effects observed with these cyclic imide derivatives in this study suggest promising applications against acute leukemia.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Leucemia/patologia , Maleimidas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células Jurkat , Células K562 , Maleimidas/síntese química , Maleimidas/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
13.
Exp Parasitol ; 135(4): 661-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24140596

RESUMO

Meloidogyne exigua is a parasitic nematode of plants that causes great losses to coffee farmers. In an effort to develop parasitic controls, 154 chalcones were synthesized and screened for activity against this nematode. The best results were obtained with (2E)-1-(4'-nitrophenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one (6) with a 50% lethal concentration (LC50) of 171 µg/ml against M. exigua second-stage juveniles, in comparison to the commercially-available nematicide carbofuran which had an LC50 of 260 µg/ml under the same conditions. When coffee plants were used, 6 reduced the nematode population to ~50% of that observed in control plants. To investigate the mechanism of action of 6, an in silico study was carried out, which indicated that 6 may act against M. exigua through inhibition of a putative caffeic acid 3-O-methyltransferase homodimer, the amino acid sequence of which was determined by examining the genome of Meloidogyne incognita.


Assuntos
Benzaldeídos/química , Chalconas/farmacologia , Coffea/parasitologia , Metiltransferases/antagonistas & inibidores , Tylenchoidea/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Chalconas/química , Chalconas/isolamento & purificação , Dose Letal Mediana , Ligantes , Medicago sativa/enzimologia , Metiltransferases/química , Dados de Sequência Molecular , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Tylenchoidea/enzimologia
14.
Molecules ; 18(12): 15276-87, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24335577

RESUMO

Herein, we report the antimalarial activity of nine 4-methoxychalcone derivatives 1a-i and an initial analysis of their ADMET properties. All compounds showed potent activity against the P. falciparum chloroquine-resistant clone W2, with IC50 values ranging from 1.96 µM to 10.99 µM, with moderate or low cytotoxicity against the HeLa cell line. The compound 1a (IC50 = 2.06 µM) had the best selectivity index (9.0). All the sulfonamide 4-metychalcone derivatives synthesized had cLogP values between 2 and 5 (mean value 3.79) and molecular weights (MWs) below 500. The substitution of the pyrrolidine group in 1i by a morpholine group in 1a reduced the cLogP value from 3.05 in compound 1i to 2.34 in compound 1a. Indeed, compound 1a had the highest LipE value. The binding free energy of compound 1a showed it to be the most optimal chalcone derivative for plasmepsin-2 (-7.3 Kcal/mol). The physicochemical properties and LipE analysis of the dataset allowed us to establish that compound 1a is the highest quality compound of the series and a potential oral lead candidate.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Chalcona/química , Chalcona/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/síntese química , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/metabolismo , Sítios de Ligação , Chalcona/síntese química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Peso Molecular , Testes de Sensibilidade Parasitária , Ligação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo
15.
Invest New Drugs ; 30(3): 870-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21221709

RESUMO

Gallates with eight or more carbon atoms in the lateral chain show potent anticancer activity against various cell lines. However, studies regarding the in vivo antimelanoma activity of tetradecyl gallate (C(14)) have not yet been reported. In this study an evaluation of the ability of C(14) to inhibit metastasis, using lung metastases as a model, was carried out. The experimental mouse melanoma model was established by intravenous injection of metastatic B16F10 melanoma cells. The systemic toxicity of C(14) was evaluated in vivo by monitoring the weight, survival, biochemical and hematological parameters, and through histological analysis. It was observed that C(14) decreased lung metastasis in vivo by 80% and increased the survival rate of the animals without toxic effects. Additionally, C(14) induced cytotoxic effects on B16F10 cells, inhibited the inter-cellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) expression, and significantly decreased cell adhesion. These results reveal that C(14) has potent antimetastatic ability and is a good candidate for further study as a potential therapeutic agent for tumor metastases.


Assuntos
Antineoplásicos/uso terapêutico , Ácido Gálico/análogos & derivados , Ácido Gálico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Melanoma Experimental/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Ácido Gálico/farmacologia , Molécula 1 de Adesão Intercelular/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Molécula 1 de Adesão de Célula Vascular/metabolismo
16.
Bioorg Med Chem ; 19(14): 4295-306, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21696965

RESUMO

In this study a series of sulphonamides and sulphonyl hydrazones of maleimide, naphthalimide and phthalimide derivatives was synthesized. The antidepressant effect of these compounds was evaluated by the forced-swimming test in mice. The behavioural parameter observed in this test is a reduction in the immobility time, which is indicative of antidepressant activity. All compounds, except 8, 11 and 24, were active as antidepressants. The most active compound was the sulphonyl-hydrazone 10 which showed an activity of around 72.02% at 60 mg/kg, it thus being more active than imipramine (10mg/kg, ip), a commercial antidepressant. Other important results were obtained for the benzylnaphthalimide derivatives, the sulphonamides 21 and 22 showing activity of 64% at 10mg/kg, also being more active than imipramine. These results indicate that the sulphonamides and sulphonyl-hydrazone cyclic imide derivatives are potential compounds for use in the designing of new candidates for the treatment of depression.


Assuntos
Antidepressivos/farmacologia , Hidrazonas/farmacologia , Atividade Motora/efeitos dos fármacos , Sulfonamidas/farmacologia , Animais , Antidepressivos/síntese química , Antidepressivos/química , Hidrazonas/síntese química , Hidrazonas/química , Masculino , Camundongos , Estrutura Molecular , Estereoisomerismo , Estresse Psicológico , Sulfonamidas/síntese química , Sulfonamidas/química , Natação/psicologia
17.
Bioorg Med Chem ; 19(21): 6285-91, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21964182

RESUMO

Cyclic imides are a large class of compounds obtained by organic synthesis including several sub-classes (succinimides maleimide, glutarimide, phthalimides naphtalimides, and its derivatives). Recently, some cyclic imide derivatives have shown important results as potential antitumor agents, as a Mitonafide and Amonafide. Based on this fact, we have studied antitumoral properties of nine cyclic imide derivatives, four of which are unpublished compounds, against Murine Melanoma Cells (B16F10). Initially, the MTT assay was used to select the compound with the best cytotoxic potential. After this selection, the compound 2-benzyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (4), which showed the best cytotoxic effects, was evaluated by flow cytometry, and a significant increase was observed in the proportion of cells in the subG0/G1, S and G2/M phases accompanied by a significant decrease in the G0/G1 phases. Then the mechanism involved on the death route (necrosis or apoptosis) was evaluated the by bromide and acridine orange method and by an Annexin V-FITC Apoptosis Detection kit. These results confirm that the percentage of B16F10 cells observed in the sub G0/G1 phase were undergoing apoptosis. The biological effects observed in the current study for the cyclic imide derivatives suggested promising applications, especially for the prototype compound 4.


Assuntos
Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Isoquinolinas/farmacologia , Melanoma Experimental/tratamento farmacológico , Naftalimidas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Concentração Inibidora 50 , Isoquinolinas/síntese química , Isoquinolinas/química , Espectroscopia de Ressonância Magnética , Melanoma Experimental/patologia , Camundongos , Naftalimidas/síntese química , Naftalimidas/química , Espectrofotometria Infravermelho
18.
Bioorg Med Chem ; 19(16): 5046-52, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21757358

RESUMO

In this work we described the synthesis, the antileishmanial activity and the molecular modeling and structure-activity relationship (SAR) evaluations of a series of chalcone derivatives. Among these compounds, the methoxychalcones 2h, 2i, 2j, 2k and 2l showed significant antileishmanial activity (IC(50)<10 µM). Interestingly 2i (IC(50)=2.7 µM), 2j (IC(50)=3.9 µM) and 2k (IC(50)=4.6 µM) derivatives presented better antileishmanial activity than the control drug pentamidine (IC(50)=6.0 µM). Our SAR study showed the importance of methoxy di-ortho substitution at phenyl ring A and the relationship between the frontier orbital HOMO coefficients distribution of these molecules and their activity. The most active compounds 2h, 2i, 2j, 2k, and 2l fulfilled the Lipinski rule-of-five which theoretically is important for good drug absorption and permeation through biological membranes. The potential profile of 2j (IC(50)=3.9 µM and CC(50)=216 µM) pointed this chalcone derivative as a hit compound to be further explored in antileishmanial drug design.


Assuntos
Antiprotozoários/farmacologia , Chalcona/farmacologia , Leishmania braziliensis/crescimento & desenvolvimento , Antiprotozoários/química , Chalcona/análogos & derivados , Chalcona/química , Leishmania braziliensis/efeitos dos fármacos , Modelos Moleculares , Relação Estrutura-Atividade
19.
Hematol Oncol Stem Cell Ther ; 14(1): 51-64, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32763229

RESUMO

The present study aimed to investigate the cytotoxic effect of 38 new thiosemicarbazone derivatives on hematological neoplastic cells lines and to select the most effective compounds to investigate the main molecular mechanisms involved in cell death. Cytotoxicity screening on Daudi and Jurkat cells revealed that only compound 1b met the selection criteria; therefore, it was chosen for further investigation. Cell viability of Daudi, Jurkat, Molt-4, Namalwa, K562, and MM.1S cell lines decreased in a concentration- and time-dependent manner after compound1b incubation; nevertheless the compound neither caused significant hemolysis nor reduction in peripheral blood mononuclear cell viability. Although no changes were observed on cell cycle or Ki-67 expression, compound1b induced apoptotic-like cell death with mitochondrial involvement, Bax/Bcl-2 inversion, AIF release, survivin inhibition, and caspase-3 activation in both Daudi and Jurkat cells. Furthermore, the compound reduced NFκB expression in Jurkat cells. In Daudi cells, compound1b also decreased CHOP, Akt, pAkt, and MAPK/ERK2 expression, thereby suggesting modulation of UPR, PI3K/Akt/mTOR, and MAPK/ERK signaling pathways. Finally, the compound was able to reduce the cell viability of samples collected from patients with different lymphoid neoplasms subtypes, showing that thiosemicarbazones derivatives could be used in the development of new drugs with anticancer activity.


Assuntos
Antineoplásicos , Citotoxinas , Leucemia , Linfoma , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Tiossemicarbazonas , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , Humanos , Células Jurkat , Células K562 , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Leucemia/patologia , Linfoma/tratamento farmacológico , Linfoma/metabolismo , Linfoma/patologia , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia
20.
Bioorg Med Chem ; 18(22): 8026-34, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20952199

RESUMO

In this study, we investigated the effects of 24 chalcone derivatives from 2-naphthylacetophenone toward a lymphoblastic leukemia cell line (L1210). Three compounds, called R7, R13, and R15, presented concentration- and time-dependent cytotoxicity and induced cellular death by apoptosis via mitochondrial injury and oxidative stress. The effects of these compounds appear to occur through different mechanisms because R13 and R7 induced a greater disturbance of mitochondrial potential, and all compounds induced disturbances of cellular ATP content and increased caspase-3 activity before cellular death. These compounds also interfered with antioxidant enzymes activities and GSH content through different mechanisms.


Assuntos
Antineoplásicos/química , Apoptose , Caspase 3/metabolismo , Chalcona/análogos & derivados , Chalconas/química , Leucemia/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Chalcona/uso terapêutico , Chalcona/toxicidade , Chalconas/uso terapêutico , Chalconas/toxicidade , Humanos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa