Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38865496

RESUMO

Cichlid fishes of the genus Oreochromis (tilapia) are among the most important fish for inland capture fisheries and global aquaculture. Deliberate introductions of non-native species for fisheries improvement and accidental escapees from farms have resulted in admixture with indigenous species. Such hybridization may be detrimental to native biodiversity, potentially leading to genomic homogenization of populations and the loss of important genetic material associated with local adaptation. By contrast, introgression may fuel diversification when combined with ecological opportunity, by supplying novel genetic combinations. To date, the role of introgression in the evolutionary history of tilapia has not been explored. Here we studied both ancient and recent hybridization in tilapia, using whole genome resequencing of 575 individuals from 23 species. We focused on Tanzania, a natural hotspot of tilapia diversity, and a country where hybridization between exotic and native species in the natural environment has been previously reported. We reconstruct the first genome-scale phylogeny of the genus and reveal prevalent ancient gene flow across the Oreochromis phylogeny. This has likely resulted in the hybrid speciation of one species, O. chungruruensis. We identify multiple cases of recent hybridization between native and introduced species in the wild, linked to the use of non-native species in both capture fisheries improvement and aquaculture. This has potential implications for both conservation of wild populations and the development of the global tilapia aquaculture industry.


Assuntos
Hibridização Genética , Filogenia , Animais , Tanzânia , Fluxo Gênico , Ciclídeos/genética , Tilápia/genética
2.
Mol Biol Rep ; 46(5): 5079-5088, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31422491

RESUMO

The crimson jobfish, Pristipomoides filamentosus Valenciennes, 1830 is an economically important demersal species largely distributed in the Indo-Pacific region. Pristipomoides filamentosus constitutes a significant portion of catch landed in demersal fisheries throughout the species' distribution range. Despite the species' economic importance, there is insufficient data to guide the species' conservation management, especially within the south-western (SW) Indian Ocean region. The aims of the present study were to conduct a population genetic analysis to determine the spatial genetic structure of the species and, whether different management units could be established in the region, using an analysis of both mitochondrial DNA fragment (mtDNA), and nuclear microsatellite loci. A total of 193 fin clips were collected from Seychelles, Kenya, Tanzania, Comoros, Madagascar, Mauritius and South Africa, with each having an established fishery of the species. Both haplotype diversity (h) and expected heterozygosity (HE) for mtDNA and microsatellite loci respectively were generally high for all localities, except for Seychelles where both diversity indices were at the lowest (i.e. h = 0.429 ± 0.134; HE = 0.647 ± 0.059). Even though mtDNA failed to detect population differentiation, the hypervariable microsatellite loci consistently indicated presence of four genetic clusters irrespective of the clustering approach applied. Based on present results, we propose recognising the four clusters as distinct fisheries management units of the species in the SW Indian Ocean region.


Assuntos
DNA Mitocondrial/genética , Peixes/classificação , Variação Genética , Animais , Peixes/genética , Oceano Índico , Repetições de Microssatélites , Mitocôndrias/genética
3.
Mol Phylogenet Evol ; 79: 415-21, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25079137

RESUMO

African suckermouth catfishes (Mochokidae: Chiloglanis) occur in freshwater throughout tropical Africa. Specimens from all major drainages across Kenya were collected over three field seasons. Here we present a phylogeny inferred from both mitochondrial cytochrome b (cyt b) and introns of the nuclear Growth Hormone gene (GH). The phylogeny inferred from introns is largely congruent with the results from an analysis of cyt b. The length and variability of GH introns make them ideal species level nuclear markers without the problem of introgression commonly encountered with mitochondrial genes. This analysis confirmed the presence of two previously known undescribed Chiloglanis species and also suggests the presence of previously unknown diversity within the Athi River system. The resulting phylogeny also indicates the presence of two separate lineages within C. brevibarbis. The historical biogeography of Chiloglanis within Kenya is discussed. The utility of GH intron for species level phylogenies of Siluriformes is compared to that in other groups.


Assuntos
Peixes-Gato/classificação , Hormônio do Crescimento/genética , Íntrons , Filogenia , Animais , Teorema de Bayes , Peixes-Gato/genética , DNA Mitocondrial/genética , Marcadores Genéticos , Quênia , Funções Verossimilhança , Modelos Genéticos , Filogeografia , Análise de Sequência de DNA
4.
Zootaxa ; 4450(1): 115-124, 2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30313861

RESUMO

Cytochrome c oxidase subunit I (COI) gene sequences of two specimens here recognized as Auchenoglanis occidentalis from Lake Turkana in the Ethiopian section were determined. A COI gene-based phylogenetic analysis was performed for these along with sequences of African catfish species from the family Clarotidae available in GenBank. Based on results of this analysis, it is concluded that (1) the currently identified A. occidentalis is a species complex that includes several distinct species; (2) the Niger River basin harbors two distinct species of Auchenoglanis, one of which occurs in Lake Turkana, as well as A. biscutatus; and (3) A. sacchii is likely a valid species, but it is not the endemic species of Lake Turkana. It is suggested here that species diversity of Auchenoglanis requires further study based on molecular and morphological evidence.


Assuntos
Peixes-Gato , Filogenia , África Oriental , Animais , Lagos
5.
PLoS One ; 9(9): e106972, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25222491

RESUMO

The need to improve food security in Africa through culture of tilapias has led to transfer of different species from their natural ranges causing negative impacts on wild fish genetic resources. Loboi swamp in Kenya is fed by three hot springs: Lake Bogoria Hotel, Chelaba and Turtle Springs, hosting natural populations of Oreochromis niloticus. The present study aimed at better genetic characterization of these threatened populations. Partial mtDNA sequences of the D-loop region and variations at 16 microsatellite loci were assessed in the three hot spring populations and compared with three other natural populations of O. niloticus in the region. Results obtained indicated that the hot spring populations had mitochondrial and nuclear genetic variability similar to or higher than the large closely related populations. This may be attributed to the perennial nature of the hot springs, which do not depend on rainfall but rather receive permanent water supply from deep aquifers. The study also revealed that gene flow between the three different hot spring populations was sufficiently low thus allowing their differentiation. This differentiation was unexpected considering the very close proximity of the springs to each other. It is possible that the swamp creates a barrier to free movement of fish from one spring to the other thereby diminishing gene flow. Finally, the most surprising and worrying results were that the three hot spring populations are introgressed by mtDNA genes of O. leucostictus, while microsatellite analysis suggested that some nuclear genes may also have crossed the species barrier. It is very likely that the recent intensification of aquaculture activities in the Loboi drainage may be responsible for these introgressions. Taking into account the importance of these new genetic resources, protection and management actions of the Loboi swamp should be accorded top priority to prevent the loss of these spring populations.


Assuntos
Aquicultura , Ciclídeos/genética , Conservação dos Recursos Naturais , Variação Genética , Animais , DNA Mitocondrial/química , Espécies em Perigo de Extinção , Fluxo Gênico , Genótipo , Fontes Termais , Quênia , Repetições de Microssatélites
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa