Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Stem Cells ; 31(8): 1657-68, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23629812

RESUMO

Harnessing outgrowth endothelial cells (OECs) for vasoreparative therapy and tissue engineering requires efficient ex vivo expansion. How such expansion impacts on OEC function is largely unknown. In this study, we show that OECs become permanently cell-cycle arrested after ex vivo expansion, which is associated with enlarged cell size, ß-galactosidase activity, DNA damage, tumor suppressor pathway activation, and significant transcriptome changes. These senescence hallmarks were coupled with low telomerase activity and telomere shortening, indicating replicative senescence. OEC senescence limited their regenerative potential by impairing vasoreparative properties in vitro and in vivo. Integrated transcriptome-proteome analysis identified inflammatory signaling pathways as major mechanistic components of the OEC senescence program. In particular, IL8 was an important facilitator of this senescence; depletion of IL8 in OECs significantly extended ex vivo lifespan, delayed replicative senescence, and enhanced function. While the ability to expand OEC numbers prior to autologous or allogeneic therapy remains a useful property, their replicative senescence and associated impairment of vasorepair needs to be considered. This study also suggests that modulation of the senescence-associated secretory phenotype could be used to optimize OEC therapy.


Assuntos
Células Endoteliais/citologia , Células Endoteliais/metabolismo , Interleucina-8/metabolismo , Adulto , Animais , Terapia Baseada em Transplante de Células e Tecidos , Senescência Celular/fisiologia , Modelos Animais de Doenças , Olho/irrigação sanguínea , Sangue Fetal/citologia , Técnicas de Silenciamento de Genes , Humanos , Interleucina-8/deficiência , Interleucina-8/genética , Isquemia/patologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Regeneração/fisiologia , Transdução de Sinais , Adulto Jovem
2.
Mol Med ; 17(9-10): 1045-55, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21670847

RESUMO

Endothelial progenitor cells (EPCs) promote angiogenesis, and clinical trials have shown such cell therapy to be feasible for treating ischemic disease. However, clinical outcomes have been contradictory owing to the diverse range of EPC types used. We recently characterized two EPC subtypes, and identified outgrowth endothelial cells as the only EPC type with true progenitor and endothelial characteristics. By contrast, myeloid angiogenic cells (MACs) were shown to be monocytic cells without endothelial characteristics despite being widely described as "EPCs." In the current study we demonstrated that although MACs do not become endothelial cells or directly incorporate into a microvascular network, they can significantly induce endothelial tube formation in vitro and vascular repair in vivo. MAC-derived interleukin-8 (IL-8) was identified as a key paracrine factor, and blockade of IL-8 but not vascular endothelial growth factor (VEGF) prevented MAC-induced angiogenesis. Extracellular IL-8 transactivates VEGFR2 and induces phosphorylation of extracellular signal-regulated kinases. Further transcriptomic and immunophenotypic analysis indicates that MACs represent alternative activated M2 macrophages. Our findings demonstrate an unequivocal role for MACs in angiogenesis, which is linked to paracrine release of cytokines such as IL-8. We also show, for the first time, the true identity of these cells as alternative M2 macrophages with proangiogenic, antiinflammatory and pro-tissue-repair properties.


Assuntos
Células Endoteliais/fisiologia , Interleucina-8/metabolismo , Macrófagos/fisiologia , Células Mieloides/fisiologia , Neovascularização Fisiológica/fisiologia , Adulto , Animais , Bovinos , Células Cultivadas , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Immunoblotting , Interleucina-8/genética , Isquemia/fisiopatologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteômica/métodos , Vasos Retinianos/metabolismo , Vasos Retinianos/fisiologia , Células-Tronco/metabolismo , Células-Tronco/fisiologia , Transcriptoma , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
3.
Immunobiology ; 218(11): 1370-5, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23932437

RESUMO

Macrophage function is not restricted to the innate and adaptive immune responses, but also includes host defence, wound healing, angiogenesis and homeostatic processes. Within the spectrum of macrophage activation there are two extremes: M1 classically activated macrophages which have a pro-inflammatory phenotype, and M2 alternatively activated macrophages which are pro-angiogenic and anti-inflammatory. An important property of macrophages is their plasticity to switch from one phenotype to the other and they can be defined in their polarisation state at any point between the two extremes. In order to determine what stage of activation macrophages are in, it is essential to profile various phenotypic markers for their identification. This review describes the angiogenic role for myeloid cells: circulating monocytes, Tie-2 expressing monocytes (TEMs), myeloid-derived suppressor cells (MDSCs), tumour associated macrophages (TAMs), and neutrophils. Each cell type is discussed by phenotype, roles within angiogenesis and possible targets as a cell therapy. In addition, we also refer to our own research on myeloid angiogenic cells (MACs), outlining their ability to induce angiogenesis and their similarities to alternatively activated M2 macrophages. MACs significantly contribute to vascular repair through paracrine mechanisms as they lack the capacity to differentiate into endothelial cells. Since MACs also retain plasticity, phenotypic changes can occur according to disease states and the surrounding microenvironment. This pro-angiogenic potential of MACs could be harnessed as a novel cellular therapy for the treatment of ischaemic diseases, such as diabetic retinopathy, hind limb ischaemia and myocardial infarction; however, caution needs to be taken when MACs are delivered into an inflammatory milieu.


Assuntos
Macrófagos/imunologia , Monócitos/imunologia , Células Mieloides/imunologia , Neovascularização Patológica/imunologia , Diferenciação Celular/imunologia , Humanos , Imunoterapia/métodos , Inflamação/imunologia , Ativação de Macrófagos/imunologia , Neutrófilos/imunologia , Receptor TIE-2/biossíntese , Receptor TIE-2/metabolismo
4.
Stem Cells Int ; 2012: 346735, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22550504

RESUMO

Endothelial progenitor cells (EPCs) have great clinical value because they can be used as diagnostic biomarkers and as a cellular therapy for promoting vascular repair of ischaemic tissues. However, EPCs also have an additional research value in vascular disease modelling to interrogate human disease mechanisms. The term EPC is used to describe a diverse variety of cells, and we have identified a specific EPC subtype called outgrowth endothelial cell (OEC) as the best candidate for vascular disease modelling because of its high-proliferative potential and unambiguous endothelial commitment. OECs are isolated from human blood and can be exposed to pathologic conditions (forward approach) or be isolated from patients (reverse approach) in order to study vascular human disease. The use of OECs for modelling vascular disease will contribute greatly to improving our understanding of endothelial pathogenesis, which will potentially lead to the discovery of novel therapeutic strategies for vascular diseases.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa