RESUMO
Declining body size in fishes and other aquatic ectotherms associated with anthropogenic climate warming has significant implications for future fisheries yields, stock assessments and aquatic ecosystem stability. One proposed mechanism seeking to explain such body-size reductions, known as the gill oxygen limitation (GOL) hypothesis, has recently been used to model future impacts of climate warming on fisheries but has not been robustly empirically tested. We used brook trout (Salvelinus fontinalis), a fast-growing, cold-water salmonid species of broad economic, conservation and ecological value, to examine the GOL hypothesis in a long-term experiment quantifying effects of temperature on growth, resting metabolic rate (RMR), maximum metabolic rate (MMR) and gill surface area (GSA). Despite significantly reduced growth and body size at an elevated temperature, allometric slopes of GSA were not significantly different than 1.0 and were above those for RMR and MMR at both temperature treatments (15°C and 20°C), contrary to GOL expectations. We also found that the effect of temperature on RMR was time-dependent, contradicting the prediction that heightened temperatures increase metabolic rates and reinforcing the importance of longer-term exposures (e.g. >6â months) to fully understand the influence of acclimation on temperature-metabolic rate relationships. Our results indicate that although oxygen limitation may be important in some aspects of temperature-body size relationships and constraints on metabolic supply may contribute to reduced growth in some cases, it is unlikely that GOL is a universal mechanism explaining temperature-body size relationships in aquatic ectotherms. We suggest future research focus on alternative mechanisms underlying temperature-body size relationships, and that projections of climate change impacts on fisheries yields using models based on GOL assumptions be interpreted with caution.
Assuntos
Salmonidae , Animais , Ecossistema , Oxigênio , Brânquias , Temperatura , Truta , Água , Tamanho CorporalRESUMO
As air temperature increases, it has been suggested that smaller individual body size may be a general response to climate warming. However, for ectotherms inhabiting cold, highly seasonal environments, warming temperatures may increase the scope for growth and result in larger body size. In a long-term study of individual brook trout Salvelinus fontinalis and brown trout Salmo trutta inhabiting a small stream network, individual lengths increased over the course of 15 years. As size-selective gains and losses to the population acted to reduce body sizes and mean body size at first tagging in the autumn (<60 mm) were not observed to change substantially over time, the increase in body size was best explained by higher individual growth rates. For brook trout, increasing water temperatures during the spring (when both trout species accomplish most of their total annual growth) was the primary driver of growth rate for juvenile fish and the environmental factor which best explained increases in individual body size over time. For brown trout, by contrast, reduction in and subsequent elimination of juvenile Atlantic salmon Salmo salar midway through the study period explained most of the increases in juvenile growth and body size. In addition to these major trends, a considerable amount of interannual variation in trout growth and body size was explained by other abiotic (stream flow) and biotic (population density) factors with the direction and magnitude of these effects differing by season, age-class and species. For example, stream flow was the dominant growth rate driver for adult fish with strong positive effects in the summer and autumn, but flow variation could not explain increases in body size as we observed no trend in flow. Overall, our work supports the general contention that for high-latitude ectotherms, increasing spring temperatures associated with a warming climate can result in increased growth and individual body size (up to a point), but context-dependent change in other factors can substantially contribute to both interannual variation and longer-term effects.
Assuntos
Clima , Truta , Animais , Truta/fisiologia , Estações do Ano , Tamanho Corporal , RiosRESUMO
The effective number of breeders that give rise to a cohort (N(b)) is a promising metric for genetic monitoring of species with overlapping generations; however, more work is needed to understand factors that contribute to variation in this measure in natural populations. We tested hypotheses related to interannual variation in N(b) in two long-term studies of brook trout populations. We found no supporting evidence for our initial hypothesis that N^(b) reflects N^(c) (defined as the number of adults in a population at the time of reproduction). N^(b) was stable relative to N^(C) and did not follow trends in abundance (one stream negative, the other positive). We used stream flow estimates to test the alternative hypothesis that environmental factors constrain N(b). We observed an intermediate optimum autumn stream flow for both N^(b) (R(2) = 0.73, P = 0.02) and full-sibling family evenness (R(2) = 0.77, P = 0.01) in one population and a negative correlation between autumn stream flow and full-sib family evenness in the other population (r = -0.95, P = 0.02). Evidence for greater reproductive skew at the lowest and highest autumn flow was consistent with suboptimal conditions at flow extremes. A series of additional tests provided no supporting evidence for a related hypothesis that density-dependent reproductive success was responsible for the lack of relationship between N(b) and N(C) (so-called genetic compensation). This work provides evidence that N(b) is a useful metric of population-specific individual reproductive contribution for genetic monitoring across populations and the link we provide between stream flow and N(b) could be used to help predict population resilience to environmental change.
Assuntos
Genética Populacional , Reprodução/genética , Truta/genética , Animais , Variação Genética , Massachusetts , Repetições de Microssatélites , Densidade Demográfica , Rios , Virginia , Movimentos da ÁguaRESUMO
Modelling the effects of environmental change on populations is a key challenge for ecologists, particularly as the pace of change increases. Currently, modelling efforts are limited by difficulties in establishing robust relationships between environmental drivers and population responses. We developed an integrated capture-recapture state-space model to estimate the effects of two key environmental drivers (stream flow and temperature) on demographic rates (body growth, movement and survival) using a long-term (11 years), high-resolution (individually tagged, sampled seasonally) data set of brook trout (Salvelinus fontinalis) from four sites in a stream network. Our integrated model provides an effective context within which to estimate environmental driver effects because it takes full advantage of data by estimating (latent) state values for missing observations, because it propagates uncertainty among model components and because it accounts for the major demographic rates and interactions that contribute to annual survival. We found that stream flow and temperature had strong effects on brook trout demography. Some effects, such as reduction in survival associated with low stream flow and high temperature during the summer season, were consistent across sites and age classes, suggesting that they may serve as robust indicators of vulnerability to environmental change. Other survival effects varied across ages, sites and seasons, indicating that flow and temperature may not be the primary drivers of survival in those cases. Flow and temperature also affected body growth rates; these responses were consistent across sites but differed dramatically between age classes and seasons. Finally, we found that tributary and mainstem sites responded differently to variation in flow and temperature. Annual survival (combination of survival and body growth across seasons) was insensitive to body growth and was most sensitive to flow (positive) and temperature (negative) in the summer and fall. These observations, combined with our ability to estimate the occurrence, magnitude and direction of fish movement between these habitat types, indicated that heterogeneity in response may provide a mechanism providing potential resilience to environmental change. Given that the challenges we faced in our study are likely to be common to many intensive data sets, the integrated modelling approach could be generally applicable and useful.
Assuntos
Temperatura , Truta/fisiologia , Movimentos da Água , Fatores Etários , Animais , Demografia , Ecossistema , Modelos Teóricos , Dinâmica Populacional , Rios , Estações do Ano , Truta/crescimento & desenvolvimentoRESUMO
For organisms with overlapping generations that occur in metapopulations, uncertainty remains regarding the spatiotemporal scale of inference of estimates of the effective number of breeders (N^b) and whether these estimates can be used to predict generational Ne. We conducted a series of tests of the spatiotemporal scale of inference of estimates of Nb in nine consecutive cohorts within a long-term study of brook trout (Salvelinus fontinalis). We also tested a recently developed approach to estimate generational Ne from N^b and compared this to an alternative approach for estimating N^e that also accounts for age structure. Multiple lines of evidence were consistent with N^b corresponding to the local (subpopulation) spatial scale and the cohort-specific temporal scale. We found that at least four consecutive cohort-specific estimates of N^b were necessary to obtain reliable estimates of harmonic mean N^b for a subpopulation. Generational N^e derived from cohort-specific N^b was within 7%-50% of an alternative approach to obtain N^e, suggesting some population specificity for concordance between approaches. Our results regarding the spatiotemporal scale of inference for Nb should apply broadly to many taxa that exhibit overlapping generations and metapopulation structure and point to promising avenues for using cohort-specific N^b for local-scale genetic monitoring.
RESUMO
Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59°C), identified a clear warming trend (0.63 °C decade(-1)) and a widening of the synchronized period (29 d decade(-1)). We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (â¼0.05% average drop in RMSE with 10% fewer days with data). Missing all data for a year decreased performance (â¼0.6 °C jump in RMSE), but this decrease was moderated when data were available from other streams in the network.
RESUMO
Fragmentation can strongly influence population persistence and expression of life-history strategies in spatially-structured populations. In this study, we directly estimated size-specific dispersal, growth, and survival of stream-dwelling brook trout in a stream network with connected and naturally-isolated tributaries. We used multiple-generation, individual-based data to develop and parameterize a size-class and location-based population projection model, allowing us to test effects of fragmentation on population dynamics at local (i.e., subpopulation) and system-wide (i.e., metapopulation) scales, and to identify demographic rates which influence the persistence of isolated and fragmented populations. In the naturally-isolated tributary, persistence was associated with higher early juvenile survival ( approximately 45% greater), shorter generation time (one-half) and strong selection against large body size compared to the open system, resulting in a stage-distribution skewed towards younger, smaller fish. Simulating barriers to upstream migration into two currently-connected tributary populations caused rapid (2-6 generations) local extinction. These local extinctions in turn increased the likelihood of system-wide extinction, as tributaries could no longer function as population sources. Extinction could be prevented in the open system if sufficient immigrants from downstream areas were available, but the influx of individuals necessary to counteract fragmentation effects was high (7-46% of the total population annually). In the absence of sufficient immigration, a demographic change (higher early survival characteristic of the isolated tributary) was also sufficient to rescue the population from fragmentation, suggesting that the observed differences in size distributions between the naturally-isolated and open system may reflect an evolutionary response to isolation. Combined with strong genetic divergence between the isolated tributary and open system, these results suggest that local adaptation can 'rescue' isolated populations, particularly in one-dimensional stream networks where both natural and anthropogenically-mediated isolation is common. However, whether rescue will occur before extinction depends critically on the race between adaptation and reduced survival in response to fragmentation.