Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nature ; 505(7483): 427-31, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24362570

RESUMO

Acyl carrier protein (ACP) transports the growing fatty acid chain between enzymatic domains of fatty acid synthase (FAS) during biosynthesis. Because FAS enzymes operate on ACP-bound acyl groups, ACP must stabilize and transport the growing lipid chain. ACPs have a central role in transporting starting materials and intermediates throughout the fatty acid biosynthetic pathway. The transient nature of ACP-enzyme interactions impose major obstacles to obtaining high-resolution structural information about fatty acid biosynthesis, and a new strategy is required to study protein-protein interactions effectively. Here we describe the application of a mechanism-based probe that allows active site-selective covalent crosslinking of AcpP to FabA, the Escherichia coli ACP and fatty acid 3-hydroxyacyl-ACP dehydratase, respectively. We report the 1.9 Å crystal structure of the crosslinked AcpP-FabA complex as a homodimer in which AcpP exhibits two different conformations, representing probable snapshots of ACP in action: the 4'-phosphopantetheine group of AcpP first binds an arginine-rich groove of FabA, then an AcpP helical conformational change locks AcpP and FabA in place. Residues at the interface of AcpP and FabA are identified and validated by solution nuclear magnetic resonance techniques, including chemical shift perturbations and residual dipolar coupling measurements. These not only support our interpretation of the crystal structures but also provide an animated view of ACP in action during fatty acid dehydration. These techniques, in combination with molecular dynamics simulations, show for the first time that FabA extrudes the sequestered acyl chain from the ACP binding pocket before dehydration by repositioning helix III. Extensive sequence conservation among carrier proteins suggests that the mechanistic insights gleaned from our studies may be broadly applicable to fatty acid, polyketide and non-ribosomal biosynthesis. Here the foundation is laid for defining the dynamic action of carrier-protein activity in primary and secondary metabolism, providing insight into pathways that can have major roles in the treatment of cancer, obesity and infectious disease.


Assuntos
Proteína de Transporte de Acila/química , Proteína de Transporte de Acila/metabolismo , Escherichia coli/química , Ácidos Graxos/biossíntese , Sítios de Ligação , Domínio Catalítico , Reagentes de Ligações Cruzadas/química , Cristalografia por Raios X , Ácido Graxo Sintase Tipo II/química , Ácido Graxo Sintase Tipo II/metabolismo , Histidina/metabolismo , Hidroliases/química , Hidroliases/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Mapas de Interação de Proteínas
2.
J Am Chem Soc ; 140(24): 7568-7578, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29787268

RESUMO

Bisphosphonates are a major class of drugs used to treat osteoporosis, Paget's disease, and cancer. They have been proposed to act by inhibiting one or more targets including protein prenylation, the epidermal growth factor receptor, or the adenine nucleotide translocase. Inhibition of the latter is due to formation in cells of analogs of ATP: the isopentenyl ester of ATP (ApppI) or an AppXp-type analog of ATP, such as AMP-clodronate (AppCCl2p). We screened both ApppI as well as AppCCl2p against a panel of 369 kinases finding potent inhibition of some tyrosine kinases by AppCCl2p, attributable to formation of a strong hydrogen bond between tyrosine and the terminal phosphonate. We then synthesized bisphosphonate preprodrugs that are converted in cells to other ATP-analogs, finding low nM kinase inhibitors that inhibited cell signaling pathways. These results help clarify our understanding of the mechanisms of action of bisphosphonates, potentially opening up new routes to the development of bone resorption, anticancer, and anti-inflammatory drug leads.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Difosfonatos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Trifosfato de Adenosina/síntese química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/farmacologia , Linhagem Celular Tumoral , Difosfonatos/síntese química , Difosfonatos/química , Humanos , Ligação de Hidrogênio , Modelos Químicos , Pró-Fármacos/síntese química , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Tirosina Quinases/antagonistas & inibidores
3.
Biochemistry ; 56(29): 3770-3779, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28660757

RESUMO

Lysyl oxidase (LOX) is a copper amine oxidase that cross-links collagens and elastin in connective tissue and plays an important role in fibrosis, cancer development, and formation of the "metastatic niche". Despite its important biological functions, the structure of human LOX remains unknown (unlike that of an unrelated LOX, from Pichia pastoris). Here, we expressed active LOX from Drosophila melanogaster, DmLOXL1, a close homologue of human LOX, and characterized it by MS, UV-vis, activity, and inhibition assays. We then used bioinformatics, electron paramagnetic resonance, electron spin-echo envelope modulation, and hyperfine sublevel-correlation (HYSCORE) spectroscopies to probe Cu-ligand bonding finding direct evidence for pH-dependent Cu-His interactions. At pH = 9.3, the spectroscopic data indicated primarily a single His bound to Cu, but at pH = 7.5, there was evidence for a ∼ 1:1 mixture of species containing 1 and 3 His ligands. We then used HYSCORE to probe possible interactions between the LOX inhibitor BAPN (ß-aminopropionitrile; 1-[13C15N]cyano-2-aminoethane) and the copper center-finding none. Overall, the results are of interest since they provide new spectroscopic information about the nature of the catalytic site in LOX, an important anticancer drug target.


Assuntos
Cobre/química , Proteínas de Drosophila/química , Proteína-Lisina 6-Oxidase/química , Aminopropionitrilo/química , Animais , Domínio Catalítico , Drosophila melanogaster , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Ligantes , Pichia , Homologia Estrutural de Proteína
4.
Chembiochem ; 18(10): 914-920, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28253432

RESUMO

Isoprenoid biosynthesis is an important area for anti-infective drug development. One isoprenoid target is (E)-1-hydroxy-2-methyl-but-2-enyl 4-diphosphate (HMBPP) reductase (IspH), which forms isopentenyl diphosphate and dimethylallyl diphosphate from HMBPP in a 2H+ /2e- reduction. IspH contains a 4 Fe-4 S cluster, and in this work, we first investigated how small molecules bound to the cluster by using HYSCORE and NRVS spectroscopies. The results of these, as well as other structural and spectroscopic investigations, led to the conclusion that, in most cases, ligands bound to IspH 4 Fe-4 S clusters by η1 coordination, forming tetrahedral geometries at the unique fourth Fe, ligand side chains preventing further ligand (e.g., H2 O, O2 ) binding. Based on these ideas, we used in silico methods to find drug-like inhibitors that might occupy the HMBPP substrate binding pocket and bind to Fe, leading to the discovery of a barbituric acid analogue with a Ki value of ≈500 nm against Pseudomonas aeruginosa IspH.


Assuntos
Inibidores Enzimáticos/metabolismo , Hemiterpenos/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Organofosfatos/metabolismo , Compostos Organofosforados/metabolismo , Enxofre/metabolismo , Biologia Computacional , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Modelos Moleculares , Estrutura Molecular , Conformação Proteica
5.
Chembiochem ; 18(11): 985-991, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28340291

RESUMO

Many organisms contain head-to-head isoprenoid synthases; we investigated three such types of enzymes from the pathogens Neisseria meningitidis, Neisseria gonorrhoeae, and Enterococcus hirae. The E. hirae enzyme was found to produce dehydrosqualene, and we solved an inhibitor-bound structure that revealed a fold similar to that of CrtM from Staphylococcus aureus. In contrast, the homologous proteins from Neisseria spp. carried out only the first half of the reaction, yielding presqualene diphosphate (PSPP). Based on product analyses, bioinformatics, and mutagenesis, we concluded that the Neisseria proteins were HpnDs (PSPP synthases). The differences in chemical reactivity to CrtM were due, at least in part, to the presence of a PSPP-stabilizing arginine in the HpnDs, decreasing the rate of dehydrosqualene biosynthesis. These results show that not only S. aureus but also other bacterial pathogens contain head-to-head prenyl synthases, although their biological functions remain to be elucidated.


Assuntos
Bactérias/enzimologia , Neopreno/metabolismo , Terpenos/metabolismo , Streptococcus faecium ATCC 9790/enzimologia , Neisseria gonorrhoeae/enzimologia , Neisseria meningitidis/enzimologia , Fosfatos de Poli-Isoprenil/metabolismo , Prenilação , Esqualeno/análogos & derivados , Esqualeno/metabolismo , Staphylococcus aureus/enzimologia
6.
ACS Catal ; 8(5): 4299-4312, 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-30345154

RESUMO

We report the results of an investigation into the catalytic role of highly conserved amide (asparagine, glutamine) and OH-containing (serine, tyrosine) residues in several prenyltransferases. We first obtained the X-ray structure of cyclolavandulyl diphosphate synthase containing two molecules of the substrate analog dimethylallyl (S)-thiolodiphosphate (DMASPP). The two molecules have similar diphosphate group orientations to those seen in other ζ-fold (cis- head-to-tail and head-to-middle) prenyltransferases with one diphosphate moiety forming a bidentate chelate with Mg2+ in the so-called S1 site (which is typically the allylic binding site in ζ-fold proteins) while the second diphosphate binds to Mg2+ in the so-called S2 site (which is typically the homoallylic binding site in ζ-fold proteins) via a single P1O1 oxygen. The latter interaction can facilitate direct phosphate-mediated proton abstraction via P1O2, or more likely by an indirect mechanism in which P1O2 stabilizes a basic asparagine species that removes H+, which is then eliminated via an Asn-Ser shuttle. The universal occurrence of Asn-Ser pairs in ζ-fold proteins leads to the idea that the highly conserved amide (Asn, Gln) and OH-containing (Tyr) residues seen in many "head-to-head" prenyltransferases such as squalene and dehydrosqualene synthase might play similar roles, in H+ elimination. Structural, bioinformatics and mutagenesis investigations indeed indicate an important role of these residues in catalysis, with the results of density functional theory calculations showing that Asn bound to Mg2+ can act as a general (imine-like) base, while Gln, Tyr and H2O form a proton channel that is adjacent to the conventional (Asp-rich) "active site". Taken together, our results lead to mechanisms of proton-elimination from carbocations in numerous prenyltransferases in which neutral species (Asn, Gln, Ser, Tyr, H2O) act as proton shuttles, complementing the more familiar roles of acidic groups (in Asp and Glu) that bind to Mg2+, and basic groups (primarily Arg) that bind to diphosphates, in isoprenoid biosynthesis.

7.
ACS Chem Biol ; 11(5): 1362-71, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-26907161

RESUMO

Trypanosomatid parasites are the causative agents of many neglected tropical diseases, including the leishmaniases, Chagas disease, and human African trypanosomiasis. They exploit unusual vacuolar soluble pyrophosphatases (VSPs), absent in humans, for cell growth and virulence and, as such, are drug targets. Here, we report the crystal structures of VSP1s from Trypanosoma cruzi and T. brucei, together with that of the T. cruzi protein bound to a bisphosphonate inhibitor. Both VSP1s form a hybrid structure containing an (N-terminal) EF-hand domain fused to a (C-terminal) pyrophosphatase domain. The two domains are connected via an extended loop of about 17 residues. Crystallographic analysis and size exclusion chromatography indicate that the VSP1s form tetramers containing head-to-tail dimers. Phosphate and diphosphate ligands bind in the PPase substrate-binding pocket and interact with several conserved residues, and a bisphosphonate inhibitor (BPH-1260) binds to the same site. On the basis of Cytoscape and other bioinformatics analyses, it is apparent that similar folds will be found in most if not all trypanosomatid VSP1s, including those found in insects (Angomonas deanei, Strigomonas culicis), plant pathogens (Phytomonas spp.), and Leishmania spp. Overall, the results are of general interest since they open the way to structure-based drug design for many of the neglected tropical diseases.


Assuntos
Antiparasitários/química , Antiparasitários/farmacologia , Difosfonatos/química , Difosfonatos/farmacologia , Pirofosfatases/química , Trypanosoma brucei brucei/enzimologia , Trypanosoma cruzi/enzimologia , Sequência de Aminoácidos , Animais , Bovinos , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Modelos Moleculares , Conformação Proteica , Pirofosfatases/metabolismo , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma cruzi/química , Trypanosoma cruzi/efeitos dos fármacos , Tripanossomíase Bovina/tratamento farmacológico , Tripanossomíase Bovina/parasitologia
8.
Chem Sci ; 6(12): 6813-6822, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26865948

RESUMO

The protein IspH, (E)-1-hydroxy-2-methyl-but-2-enyl 4-diphosphate (HMPPP) reductase, is an essential 4Fe-4S cluster-containing protein in the methylerythritol phosphate pathway for isoprenoid biosynthesis. Using a sequence similarity network we found that there are >400 IspH proteins that are about twice as large as most of the IspHs studied to date since their IspH domains are fused to either the ribosomal protein S1 (RPS1), or to a UbiA (4-hydroxybenzoate octaprenyltransferase)-like protein. Many of the IspH-RPS1 proteins are present in anaerobes found in the human gut and some, such as Clostridium botulinum, C. tetani and Fusobacterium nucleatum, are pathogens. The IspH-UbiAs are all found in sulfate-reducing anaerobes. The IspH domains in IspH-RPS1 are fused to 4 and in a few cases 6 tandem repeats in RPS1 that, in most organisms, bind to mRNA or form part of the bacterial ribosome. Mutants in which the four RPS1 domains were sequentially eliminated had similar IspH activity as wild-type protein, indicating they are not essential for IspH catalysis. Overall, the results are of interest since they represent the first isolation of a catalytically active IspH-RPS1, as well as the identification of IspH-UbiA hybrids, two "Rosetta stone" proteins that are likely to be functionally related-IspH producing the isoprenoids required for a UbiA-like prenyl transferase; the IspH-RPS1 hybrids, perhaps, being involved in the stringent response or as Fe/O2 sensors.

9.
J Mol Biol ; 427(12): 2220-8, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25868383

RESUMO

IspG is the penultimate enzyme in non-mevalonate biosynthesis of the universal terpene building blocks isopentenyl diphosphate and dimethylallyl diphosphate. Its mechanism of action has been the subject of numerous studies but remained unresolved due to difficulties in identifying distinct reaction intermediates. Using a moderate reducing agent and an epoxide substrate analogue, we were now able to trap and crystallographically characterize various stages in the IspG-catalyzed conversion of 2-C-methyl-D-erythritol-2,4-cyclo-diphosphate into (E)-1-hydroxy-2-methylbut-2-enyl-4-diphosphate. In addition, the enzyme's structure was determined in complex with several inhibitors. These results, combined with recent electron paramagnetic resonance data, allowed us to deduce a detailed and complete IspG catalytic mechanism, which describes all stages from initial ring opening to formation of (E)-1-hydroxy-2-methylbut-2-enyl-4-diphosphate via discrete radical and carbanion intermediates. The data presented in this article provide a guide for the design of selective drugs against many prokaryotic and eukaryotic pathogens to which the non-mevalonate pathway is essential for survival and virulence.


Assuntos
Enzimas/química , Thermus thermophilus/enzimologia , Clonagem Molecular , Cristalografia por Raios X , Enzimas/genética , Modelos Moleculares , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Thermus thermophilus/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa