Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36498997

RESUMO

Stearoyl-CoA desaturase-1 (SCD1) catalyzes the rate-liming step of monounsaturated fatty acid biosynthesis and is a key regulator of systemic glucose metabolism. Mice harboring either a global (GKO) or liver-specific deletion (LKO) of Scd1 display enhanced insulin signaling and whole-body glucose uptake. Additionally, GKO and LKO mice are protected from high-carbohydrate diet-induced obesity. Given that high-carbohydrate diets can lead to chronic metabolic diseases such as obesity, diabetes, and hepatic steatosis, it is critical to understand how Scd1 deficiency confers metabolically beneficial phenotypes. Here we show that insulin-like growth factor-binding protein 1 (IGFBP1), a hepatokine that has been reported to enhance insulin signaling, is significantly elevated in the liver and plasma of GKO and LKO mice fed a low-fat high-carbohydrate diet. We also observed that the expression of hepatic Igfbp1 is regulated by oleic acid (18:1n9), a product of SCD1, through the mTORC1-FGF21 axis both in vivo and in vitro.


Assuntos
Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina , Alvo Mecanístico do Complexo 1 de Rapamicina , Ácido Oleico , Estearoil-CoA Dessaturase , Animais , Camundongos , Insulina/metabolismo , Fígado/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Obesidade/metabolismo , Ácido Oleico/metabolismo , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Carboidratos da Dieta/administração & dosagem
2.
Biochem Biophys Res Commun ; 527(3): 589-595, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32423819

RESUMO

In mouse, there are four stearoyl-CoA desaturase isoforms (SCD1-4) that catalyze the synthesis of monounsaturated fatty acids. Previously, we have shown that mice harboring a whole body deletion of the SCD1 isoform (SCD1KO) are protected from diet and genetically induced adiposity. Here, we report that global deletion of the SCD2 isoform (SCD2KO) provides a similar protective effect against the onset of both high-fat diet (HFD) and high-carbohydrate diet (HCD) induced adiposity. After 10 weeks of HFD feeding or 6 weeks of HCD feeding, SCD2KO mice failed to gain weight and had decreased fat mass. On HFD, SCD2KO mice remained glucose and insulin tolerant. Lastly, the markers for energy expenditure, UCP1 and PGC-1α, were increased in the brown adipose tissue of HFD fed SCD2KO mice.


Assuntos
Adiposidade , Dieta da Carga de Carboidratos/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Deleção de Genes , Obesidade/genética , Estearoil-CoA Dessaturase/genética , Animais , Metabolismo Energético , Feminino , Glucose/metabolismo , Insulina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Obesidade/etiologia , Obesidade/metabolismo , Fatores de Proteção , Estearoil-CoA Dessaturase/deficiência , Estearoil-CoA Dessaturase/metabolismo
3.
Int J Mol Sci ; 21(22)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207603

RESUMO

Stearoyl-CoA Desaturase-2 (SCD2) is a member of the Stearoyl-CoA Desaturase (SCD) family of enzymes that catalyze the rate-limiting step in monounsaturated fatty acid (MUFA) synthesis. The MUFAs palmitoleoyl-CoA (16:1n7) and oleoyl-CoA (18:1n9) are the major products of SCD2. Palmitoleoyl-CoA and oleoyl-CoA have various roles, from being a source of energy to signaling molecules. Under normal feeding conditions, SCD2 is ubiquitously expressed and is the predominant SCD isoform in the brain. However, obesogenic diets highly induce SCD2 in adipose tissue, lung, and kidney. Here we provide a comprehensive review of SCD2 in mouse development, metabolism, and various diseases, such as obesity, chronic kidney disease, Alzheimer's disease, multiple sclerosis, and Parkinson's disease. In addition, we show that bone mineral density is decreased in SCD2KO mice under high-fat feeding conditions and that SCD2 is not required for preadipocyte differentiation or the expression of PPARγ in vivo despite being required in vitro.


Assuntos
Adipócitos/enzimologia , Diferenciação Celular , Ácidos Graxos Monoinsaturados/metabolismo , Doenças Neurodegenerativas/enzimologia , Obesidade/enzimologia , Insuficiência Renal Crônica/enzimologia , Estearoil-CoA Dessaturase/metabolismo , Acil Coenzima A/biossíntese , Acil Coenzima A/genética , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos , Camundongos Knockout , Doenças Neurodegenerativas/genética , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/metabolismo , Palmitoil Coenzima A/biossíntese , Palmitoil Coenzima A/genética , Insuficiência Renal Crônica/genética , Estearoil-CoA Dessaturase/genética
4.
Arch Biochem Biophys ; 618: 32-43, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28193492

RESUMO

Long-chain acyl-CoA synthetases (ACSLs) convert fatty acids to fatty acyl-CoAs to regulate various physiologic processes. We characterized the ACSL isoforms in a cell line of homogeneous rat beta cells (INS-1 832/13 cells) and human pancreatic islets. ACSL4 and ACSL3 proteins were present in the beta cells and human and rat pancreatic islets and concentrated in insulin secretory granules and less in mitochondria and negligible in other intracellular organelles. ACSL1 and ACSL6 proteins were not seen in INS-1 832/13 cells or pancreatic islets. ACSL5 protein was seen only in INS-1 832/13 cells. With shRNA-mediated gene silencing we developed stable ACSL knockdown cell lines from INS-1 832/13 cells. Glucose-stimulated insulin release was inhibited ∼50% with ACSL4 and ACSL3 knockdown and unaffected in cell lines with knockdown of ACSL5, ACLS6 and ACSL1. Lentivirus shRNA-mediated gene silencing of ACSL4 and ACSL3 in human pancreatic islets inhibited glucose-stimulated insulin release. ACSL4 and ACSL3 knockdown cells showed inhibition of ACSL enzyme activity more with arachidonate than with palmitate as a substrate, consistent with their preference for unsaturated fatty acids as substrates. ACSL4 knockdown changed the patterns of fatty acids in phosphatidylserines and phosphatidylethanolamines. The results show the involvement of ACLS4 and ACLS3 in insulin secretion.


Assuntos
Coenzima A Ligases/metabolismo , Células Secretoras de Insulina/enzimologia , Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Animais , Ácido Araquidônico/química , Coenzima A Ligases/genética , Inativação Gênica , Glucose/química , Humanos , Secreção de Insulina , Ácido Palmítico/química , Fosfatidiletanolaminas/química , Fosfatidilserinas/química , Isoformas de Proteínas , Ratos
5.
Biochem Biophys Res Commun ; 445(3): 578-83, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24548407

RESUMO

Over the past century, obesity has developed into a paramount health issue that affects millions of people worldwide. Obese individuals have an increased risk to develop other metabolic disorders, such as insulin resistance and atherosclerosis, among others. Previously we determined that mice lacking stearoyl-CoA desaturase-1 (SCD1) enzyme specifically in the skin (SKO) were lean and protected from high-fat diet induced adiposity. Additionally, lipocalin 2 (Lcn2) mRNA was found to be 27-fold higher in the skin of SKO mice compared to control mice. Given reports suggesting that Lcn2 plays a role in protection against diet-induced weight gain, adiposity and insulin resistance, we hypothesized that deletion of Lcn2 alongside the skin-specific SCD1 deficiency would diminish the obesity resistance observed in SKO mice. To test this, we developed mice lacking SCD1 expression in the skin and also lacking Lcn2 expression globally and surprisingly, these mice did not gain significantly more weight than the SKO mice under high-fat diet conditions. Therefore, we conclude that Lcn2 does not mediate the protection against high-fat diet-induced adiposity observed in SKO mice.


Assuntos
Proteínas de Fase Aguda/genética , Deleção de Genes , Lipocalinas/genética , Obesidade/genética , Proteínas Oncogênicas/genética , Pele/enzimologia , Estearoil-CoA Dessaturase/genética , Proteínas de Fase Aguda/metabolismo , Animais , Dieta Hiperlipídica , Feminino , Teste de Tolerância a Glucose , Lipocalina-2 , Lipocalinas/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Obesidade/enzimologia , Obesidade/metabolismo , Proteínas Oncogênicas/metabolismo , Pele/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Triglicerídeos/análise , Triglicerídeos/metabolismo
6.
PLoS One ; 11(10): e0163234, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27695036

RESUMO

BACKGROUND: Glycomacropeptide (GMP) is a 64-amino acid glycophosphopeptide released from κ-casein during cheesemaking that promotes satiety, reduces body fat, increases bone mass and infers prebiotic and anti-inflammatory effects. The impact of adiposity and gender on bone health is unclear. OBJECTIVE: To determine how feeding female mice diets providing 60% Fat Kcal (high-fat) or 13% Fat Kcal (control) with either GMP or casein as the protein source impacts: body composition, ex vivo fatty acid oxidation, bone (femoral) biomechanical performance, and the relationship between body composition and bone. METHODS: Weanling female C57Bl/6 mice were fed high-fat (60% Fat Kcal) or control diets (13% Fat Kcal) with GMP or casein from 3 to 32 weeks of age with assessment of body weight and food intake. Body composition was assessed by dual-energy X-ray absorptiometry (DXA). Fatty acid oxidation was measured in liver, muscle, and fat tissues using 14C-palmitate. Plasma concentrations of hormones and cytokines were determined. Bone biomechanical performance was assessed by the 3-point bending test. RESULTS: Female mice fed high-fat diets showed increased fatty acid oxidation capacity in both gastrocnemius muscle and brown adipose tissue compared to mice fed the control diets with a lower fat content. Despite increased fat mass in mice fed the high-fat diets, there was little evidence of glucose impairment or inflammation. Mice fed the high-fat diets had significantly greater total body bone mineral density (BMD), femoral BMD, and femoral cross-sectional area than mice fed the control diets. Femora of mice fed the high-fat diets had increased yield load and maximum load before fracture, consistent with greater bone strength, but reduced post-yield displacement or ductility, consistent with bone brittleness. Female mice fed a high-fat GMP diet displayed increased fat oxidation capacity in subcutaneous fat relative to mice fed the high-fat casein diet. Regardless of dietary fat content, GMP increased total body bone mineral content and femur length. The prebiotic properties of GMP may mediate the beneficial effects of GMP on bone. CONCLUSIONS: Female mice adapt to high-fat feeding by increasing oxidative capacity in muscle tissue and to a lesser extent brown adipose tissue. High-fat feeding in female mice leads to development of a bone phenotype where femora show increased BMD and are stronger, yet more brittle. The increased brittleness of bone was associated with increased body fat content due to high-fat feeding. In summary, high-fat feeding in female mice increases mineralization of bone, but negatively impacts bone quality resulting in brittle bones.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/metabolismo , Fêmur/crescimento & desenvolvimento , Obesidade/dietoterapia , Animais , Fenômenos Biomecânicos , Composição Corporal/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Caseínas/administração & dosagem , Gorduras na Dieta/administração & dosagem , Feminino , Fêmur/efeitos dos fármacos , Humanos , Camundongos , Obesidade/metabolismo , Obesidade/fisiopatologia , Oxirredução , Fragmentos de Peptídeos/administração & dosagem , Fenótipo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa