Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(30): e2118054119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858415

RESUMO

Müllerian ducts are paired tubular structures that give rise to most of the female reproductive organs. Any abnormalities in the development and differentiation of these ducts lead to anatomical defects in the female reproductive tract organs categorized as Müllerian duct anomalies. Due to the limited access to fetal tissues, little is understood of human reproductive tract development and the associated anomalies. Although organoids represent a powerful model to decipher human development and disease, such organoids from fetal reproductive organs are not available. Here, we developed organoids from human fetal fallopian tubes and uteri and compared them with their adult counterparts. Our results demonstrate that human fetal reproductive tract epithelia do not express some of the typical markers of adult reproductive tract epithelia. Furthermore, fetal organoids are grossly, histologically, and proteomically different from adult organoids. While external supplementation of WNT ligands or activators in culture medium is an absolute requirement for the adult reproductive tract organoids, fetal organoids are able to grow in WNT-deficient conditions. We also developed decellularized tissue scaffolds from adult human fallopian tubes and uteri. Transplantation of fetal organoids onto these scaffolds led to the regeneration of the adult fallopian tube and uterine epithelia. Importantly, suppression of Wnt signaling, which is altered in patients with Müllerian duct anomalies, inhibits the regenerative ability of human fetal organoids and causes severe anatomical defects in the mouse reproductive tract. Thus, our fetal organoids represent an important platform to study the underlying basis of human female reproductive tract development and diseases.


Assuntos
Tubas Uterinas , Ductos Paramesonéfricos , Organoides , Útero , Adulto , Animais , Tubas Uterinas/crescimento & desenvolvimento , Feminino , Feto , Humanos , Ligantes , Camundongos , Ductos Paramesonéfricos/anormalidades , Organoides/crescimento & desenvolvimento , Organoides/metabolismo , Útero/crescimento & desenvolvimento , Via de Sinalização Wnt
2.
Proc Natl Acad Sci U S A ; 119(44): e2208040119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36279452

RESUMO

Organoid technology has provided unique insights into human organ development, function, and diseases. Patient-derived organoids are increasingly used for drug screening, modeling rare disorders, designing regenerative therapies, and understanding disease pathogenesis. However, the use of Matrigel to grow organoids represents a major challenge in the clinical translation of organoid technology. Matrigel is a poorly defined mixture of extracellular matrix proteins and growth factors extracted from the Engelbreth-Holm-Swarm mouse tumor. The extracellular matrix is a major driver of multiple cellular processes and differs significantly between tissues as well as in healthy and disease states of the same tissue. Therefore, we envisioned that the extracellular matrix derived from a native healthy tissue would be able to support organoid growth akin to organogenesis in vivo. Here, we have developed hydrogels from decellularized human and bovine endometrium. These hydrogels supported the growth of mouse and human endometrial organoids, which was comparable to Matrigel. Organoids grown in endometrial hydrogels were proteomically more similar to the native tissue than those cultured in Matrigel. Proteomic and Raman microspectroscopy analyses showed that the method of decellularization affects the biochemical composition of hydrogels and, subsequently, their ability to support organoid growth. The amount of laminin in hydrogels correlated with the number and shape of organoids. We also demonstrated the utility of endometrial hydrogels in developing solid scaffolds for supporting high-throughput, cell culture-based applications. In summary, endometrial hydrogels overcome a major limitation of organoid technology and greatly expand the applicability of organoids to understand endometrial biology and associated pathologies.


Assuntos
Neoplasias , Organoides , Feminino , Humanos , Bovinos , Animais , Organoides/metabolismo , Hidrogéis/química , Laminina/farmacologia , Laminina/metabolismo , Proteômica , Endométrio , Neoplasias/metabolismo
3.
Arch Phys Med Rehabil ; 102(5): 976-983, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32882219

RESUMO

OBJECTIVES: The focus of this systematic review was to consider whether lung volume recruitment (LVR) has an effect on pulmonary function test parameters in individuals with progressive childhood-onset neuromuscular diseases. The review was registered on PROSPERO (No. CRD42019119541). DATA SOURCES: A systematic search of the CINAHL, MEDLINE, AMED, EMCARE, Scopus, and Open Grey databases was undertaken in January 2019 considering LVR in the respiratory management of childhood-onset neuromuscular diseases. STUDY SELECTION: Studies were included if either manual resuscitator bags or volume-controlled ventilators were used to perform LVR with participants older than 6 years of age. Critical appraisal tools from the Joanna Briggs Institute were used to assess the quality of studies. Nine studies were identified, 6 of which were of sufficient quality to be included in the review. DATA EXTRACTION: Data extraction used a tool adapted from the Cochrane effective practice and organization of care group. DATA SYNTHESIS: Results were compiled using a narrative synthesis approach focused on peak cough flow, forced vital capacity, and maximum inspiratory capacity outcomes. CONCLUSIONS: Limited evidence suggests an immediate positive effect of LVR on peak cough flow and a potential long-term effect on the rate of forced vital capacity decline. Considering the accepted correlation between forced vital capacity and morbidity, this review suggests that LVR be considered for individuals with childhood-onset neuromuscular diseases once forced vital capacity starts to deteriorate. This review is limited by small sample sizes and the overall paucity of evidence considering LVR in this population group. Controlled trials with larger sample sizes are urgently needed.


Assuntos
Crianças com Deficiência , Medidas de Volume Pulmonar , Doenças Neuromusculares/fisiopatologia , Doenças Neuromusculares/reabilitação , Terapia Respiratória/métodos , Capacidade Vital/fisiologia , Criança , Humanos , Terapia Respiratória/instrumentação
4.
Inorg Chem ; 57(17): 10608-10615, 2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30132325

RESUMO

Photodynamic therapy (PDT) represents a minimally invasive and highly localized treatment strategy to ablate tumors with few side effects. In PDT, photosensitizers embedded within tumors are activated by light and undergo intersystem crossing, followed by energy transfer to molecular oxygen, resulting in the production of toxic singlet oxygen (1O2). Previously, we reported a robust, linear tetrapyrrole palladium(II) complex, Pd[DMBil1], characterized by its facile and modular synthesis, broad absorption profile, and efficient 1O2 quantum yield of ΦΔ = 0.8 in organic media. However, the insolubility of this porphyrinoid derivative in aqueous solution prevents its use under biologically relevant conditions. In this work, we report the synthesis of Pd[DMBil1]-PEG750, a water-soluble dimethylbiladiene derivative that is appended with a poly(ethylene) glycol (PEG) functionality. Characterization of this complex shows that this PEGylated biladiene architecture maintains the attractive photophysical properties of the parent complex under biologically relevant conditions. More specifically, the absorption profile of Pd[DMBil1]-PEG750 closely matches that of Pd[DMBil1] and obeys the Beer-Lambert Law, suggesting that the complex does not aggregate under biologically relevant conditions. Additionally, the emission spectrum of Pd[DMBil1]-PEG750 retains the fluorescence and phosphorescence features characteristic of Pd[DMBil1]. Importantly, the PEGylated photosensitizer generates 1O2 with ΦΔ = 0.57, which is well within the range to warrant interrogation as a potential PDT agent for treatment of cancer cells. The Pd[DMBil1]-PEG750 is biologically compatible, as it is taken up by MDA-MB-231 triple negative breast cancer (TNBC) cells and has an effective dose (ED50) of only 0.354 µM when exposed to λex > 500 nm light for 30 min. Impressively, the lethal dose (LD50) of Pd[DMBil1]-PEG750 without light exposure was measured to be 1.87 mM, leading to a remarkably high phototoxicity index of ∼5300, which is vastly superior to existing photosensitizers that form the basis for clinical PDT treatments. Finally, through flow cytometry experiments, we show that PDT with Pd[DMBil1]-PEG750 induces primarily apoptotic cell death in MDA-MB-231 cells. Overall these results demonstrate that Pd[DMBil1]-PEG750 is an easily prepared, biologically compatible, and well-tolerated photochemotherapeutic agent that can efficiently drive the photoinduced apoptotic death of TNBC cells.

5.
Front Rehabil Sci ; 4: 1164628, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37565183

RESUMO

Respiratory muscle weakness results in substantial discomfort, disability, and ultimately death in many neuromuscular diseases. Respiratory system impairment manifests as shallow breathing, poor cough and associated difficulty clearing mucus, respiratory tract infections, hypoventilation, sleep-disordered breathing, and chronic ventilatory failure. Ventilatory support (i.e., non-invasive ventilation) is an established and key treatment for the latter. As survival outcomes improve for people living with many neuromuscular diseases, there is a shift towards more proactive and preventative chronic disease multidisciplinary care models that aim to manage symptoms, improve morbidity, and reduce mortality. Clinical care guidelines typically recommend therapies to improve cough effectiveness and mobilise mucus, with the aim of averting acute respiratory compromise or respiratory tract infections. Moreover, preventing recurrent infective episodes may prevent secondary parenchymal pathology and further lung function decline. Regular use of techniques that augment lung volume has similarly been recommended (volume recruitment). It has been speculated that enhancing lung inflation in people with respiratory muscle weakness when well may improve respiratory system "flexibility", mitigate restrictive chest wall disease, and slow lung volume decline. Unfortunately, clinical care guidelines are based largely on clinical rationale and consensus opinion rather than level A evidence. This narrative review outlines the physiological changes that occur in people with neuromuscular disease and how these changes impact on breathing, cough, and respiratory tract infections. The biological rationale for lung volume recruitment is provided, and the clinical trials that examine the immediate, short-term, and longer-term outcomes of lung volume recruitment in paediatric and adult neuromuscular diseases are presented and the results synthesised.

6.
Eur J Pain ; 27(1): 99-110, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36203350

RESUMO

BACKGROUND: Temporomandibular disorders (TMD) symptoms develop into chronic pain for some patients, but the reasons for this are unclear. Psychosocial factors and chronic overlapping pain conditions are believed to contribute to the development of pain-related disability. We examined the role of jaw function, negative and positive psychological factors and chronic overlapping pain conditions (COPCs) on pain-related disability whilst controlling for demographic variables. METHODS: We collected demographics, medical and psychosocial history and the Graded Chronic Pain Scale, a measure of pain intensity and pain interference from 400 participants with chronic TMD. Structural equation modelling was used to assess a model of COPCs and the latent variables of psychological unease (pain catastrophizing, somatic symptoms and negative affect), positive valence factors (optimism and positive affect), jaw function (chewing, opening and expression limitation) and pain-related disability (pain intensity and pain interference) whilst controlling for demographic variables. RESULTS: We achieved good fit of a parsimonious model (root-mean-square error of approximation = 0.063 [90% CI] [0.051-0.075]), comparative fit index = 0.942, standard root-mean-square residual = 0.067. Jaw function was the strongest latent variable predictor, followed by psychological unease and COPCs suggesting resources focused on improving joint function, psychosocial support and management of COPCs will improve pain-related disability in TMDs. CONCLUSIONS: These findings not only increase the body of knowledge related to TMD clinical phenotypes but also, have a translational impact in further supporting the potential value of targeting physical therapy such as jaw exercise along with psychological interventions as multidisciplinary nonpharmacological therapeutic solutions.


Assuntos
Dor Crônica , Transtornos da Articulação Temporomandibular , Humanos , Dor Facial/diagnóstico , Medição da Dor , Doença Crônica
7.
J Pain ; 24(9): 1617-1632, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37121497

RESUMO

Pain catastrophization (PC), involving rumination, magnification, and helplessness, can be viewed as a coping strategy associated with chronic pain. PC is considered a driving force in mediating pain-related outcomes, but it is still unclear whether PC mediates the relationship between psychological and sociodemographic factors with chronic pain when considered in a single model. Using baseline data from a parent study, this study examined the effect of positive and negative psychological and sociodemographic factors on pain severity, interference, and jaw limitation mediated by the PC dimensions in a sample of 397 temporomandibular disorder (TMD) participants using structural equation modeling (SEM). SEM revealed that pain severity regressed on age, sex, education, and income; interference regressed on positive and negative psychological factors, education, and income; and jaw limitation regressed on age. The PC dimensions did not individually mediate these relationships. Although they jointly mediated the relationships between negative psychological factors and pain severity and between age and pain interference, the effect size was small, suggesting that PC is not a critical factor in mediating TMD pain outcomes. Reducing negative cognitions, not just PC, may be of greatest benefit to the most vulnerable TMD populations. PERSPECTIVE: This study examines sociodemographic and psychological factors that affect orofacial pain, finding that the pain catastrophizing dimensions do not mediate these relationships. Understanding which factors most strongly affect pain outcomes will help identify targets for intervention to produce the greatest benefit for the most vulnerable persons suffering from pain.


Assuntos
Dor Crônica , Transtornos da Articulação Temporomandibular , Humanos , Dor Crônica/psicologia , Análise de Classes Latentes , Dor Facial , Catastrofização/psicologia , Ansiedade , Transtornos da Articulação Temporomandibular/complicações
8.
Curr Opin Neurobiol ; 76: 102590, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35753108

RESUMO

The ventral hippocampus (vHPC) has long been thought of as the "emotional" hippocampus. Over the past several years, the complexity of vHPC has come to light, highlighting the diversity of cell types, inputs, and outputs that coordinate a constellation of positively and negatively motivated behaviors. Here, we review recent work on how vCA1 contributes to a network that associates external stimuli with internal motivational drive states to promote the selection of adaptive behavioral responses. We propose a model of vHPC function that emphasizes its role in the integration and transformation of internal and external cues to guide behavioral selection when faced with multiple potential outcomes.


Assuntos
Hipocampo , Hipocampo/fisiologia
9.
Org Lett ; 24(1): 74-79, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-34910480

RESUMO

Shuttle catalysis has emerged as a useful methodology for the reversible transfer of small functional groups, such as CO and HCN, and goes far beyond transfer hydrogenation chemistry. While a biocatalytic hydrogen-borrowing methodology is well established, the biocatalytic borrowing of alternative functional groups has not yet been realized. Herein, we present a new concept of amine borrowing via biocatalytic shuttle catalysis, which has no counterpart in chemo-shuttle catalysis and allows efficient intermolecular amine shuttling to generate reactive intermediates in situ. By coupling this dynamic exchange with an irreversible downstream step to displace the reaction equilibrium in the forward direction, high conversion to target products can be achieved. We showcase the potential of this amine-borrowing methodology using a biocatalytic equivalent of both the Knorr-pyrrole synthesis and Pictet-Spengler reaction.


Assuntos
Aminas
10.
Cell Rep Med ; 3(9): 100738, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36103879

RESUMO

Endometrial cancer is one of the most frequently diagnosed gynecological cancers worldwide, and its prevalence has increased by more than 50% over the last two decades. Despite the understanding of the major signaling pathways driving the growth and metastasis of endometrial cancer, clinical trials targeting these signals have reported poor outcomes. The heterogeneous nature of endometrial cancer is suspected to be one of the key reasons for the failure of targeted therapies. In this study, we perform a sequential window acquisition of all theoretical fragment ion spectra (SWATH)-based comparative proteomic analysis of 63 tumor biopsies collected from 20 patients and define differences in protein signature in multiple regions of the same tumor. We develop organoids from multiple biopsies collected from the same tumor and show that organoids capture heterogeneity in endometrial cancer growth. Overall, using quantitative proteomics and patient-derived organoids, we define the heterogeneous nature of endometrial cancer within a patient's tumor.


Assuntos
Neoplasias do Endométrio , Proteômica , Neoplasias do Endométrio/tratamento farmacológico , Feminino , Humanos , Organoides/patologia
11.
Nanomaterials (Basel) ; 8(9)2018 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-30149630

RESUMO

Light-activated therapies are ideal for treating cancer because they are non-invasive and highly specific to the area of light application. Photothermal therapy (PTT) and photodynamic therapy (PDT) are two types of light-activated therapies that show great promise for treating solid tumors. In PTT, nanoparticles embedded within tumors emit heat in response to laser light that induces cancer cell death. In PDT, photosensitizers introduced to the diseased tissue transfer the absorbed light energy to nearby ground state molecular oxygen to produce singlet oxygen, which is a potent reactive oxygen species (ROS) that is toxic to cancer cells. Although PTT and PDT have been extensively evaluated as independent therapeutic strategies, they each face limitations that hinder their overall success. To overcome these limitations, we evaluated a dual PTT/PDT strategy for treatment of triple negative breast cancer (TNBC) cells mediated by a powerful combination of silica core/gold shell nanoshells (NSs) and palladium 10,10-dimethyl-5,15-bis(pentafluorophenyl)biladiene-based (Pd[DMBil1]-PEG750) photosensitizers (PSs), which enable PTT and PDT, respectively. We found that dual therapy works synergistically to induce more cell death than either therapy alone. Further, we determined that low doses of light can be applied in this approach to primarily induce apoptotic cell death, which is vastly preferred over necrotic cell death. Together, our results show that dual PTT/PDT using silica core/gold shell NSs and Pd[DMBil1]-PEG750 PSs is a comprehensive therapeutic strategy to non-invasively induce apoptotic cancer cell death.

12.
Mol Cancer Res ; 16(2): 309-321, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29133593

RESUMO

Obesity is responsible for increased morbidity and mortality in endometrial cancer. Despite the positive correlation of body mass index (BMI) or obesity in endometrial carcinogenesis, the contribution of adipose tissue to the pathogenesis of endometrial hyperplasia and cancer is unclear. This study clarifies the role of adipocytes in the pathogenesis of endometrial cancer by demonstrating that adipocyte-conditioned medium (ACM) increases proliferation, migration, and survival of endometrial cancer cells compared with preadipocyte-conditioned medium (PACM). Comparative cytokine array analysis of ACM and PACM reveal upregulation of a group of cytokines belonging to the VEGF signaling pathway in ACM. VEGF protein expression is upregulated in visceral adipose tissue (VAT) in obese patients, which is correlated with increased tumor growth in an in vivo xenograft model. The increased tumor size is mechanistically associated with the activation of the PI3K/AKT/mTOR pathway, a downstream target of VEGF signaling, and its suppression decreased the growth-promoting effects of VAT on endometrial cancer cells. Similar to the human model systems, pathologic changes in endometrial cells in a hyperphagic obese mouse model are associated with increased body weight and hyperactive mTOR signaling. Analysis of human tissue specimens depicts increased in tumor vasculature and VEGF-mTOR activity in obese endometrial cancer patients compared with nonobese patients. Collectively, these results provide evidence that VEGF-mTOR signaling drives endometrial cell growth leading to hyperplasia and cancer.Implications: Adipocyte-derived VEGF-mTOR signaling may be an attractive therapeutic target against endometrial cancer in obese women. Mol Cancer Res; 16(2); 309-21. ©2017 AACR.


Assuntos
Tecido Adiposo/citologia , Hiperplasia Endometrial/patologia , Neoplasias do Endométrio/patologia , Obesidade/patologia , Serina-Treonina Quinases TOR/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células 3T3 , Tecido Adiposo/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Hiperplasia Endometrial/metabolismo , Neoplasias do Endométrio/metabolismo , Feminino , Humanos , Camundongos , Obesidade/metabolismo , Transdução de Sinais , Carga Tumoral , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa