Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genet Med ; 23(9): 1715-1725, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34054129

RESUMO

PURPOSE: To investigate the effect of PLXNA1 variants on the phenotype of patients with autosomal dominant and recessive inheritance patterns and to functionally characterize the zebrafish homologs plxna1a and plxna1b during development. METHODS: We assembled ten patients from seven families with biallelic or de novo PLXNA1 variants. We describe genotype-phenotype correlations, investigated the variants by structural modeling, and used Morpholino knockdown experiments in zebrafish to characterize the embryonic role of plxna1a and plxna1b. RESULTS: Shared phenotypic features among patients include global developmental delay (9/10), brain anomalies (6/10), and eye anomalies (7/10). Notably, seizures were predominantly reported in patients with monoallelic variants. Structural modeling of missense variants in PLXNA1 suggests distortion in the native protein. Our zebrafish studies enforce an embryonic role of plxna1a and plxna1b in the development of the central nervous system and the eye. CONCLUSION: We propose that different biallelic and monoallelic variants in PLXNA1 result in a novel neurodevelopmental syndrome mainly comprising developmental delay, brain, and eye anomalies. We hypothesize that biallelic variants in the extracellular Plexin-A1 domains lead to impaired dimerization or lack of receptor molecules, whereas monoallelic variants in the intracellular Plexin-A1 domains might impair downstream signaling through a dominant-negative effect.


Assuntos
Anormalidades do Olho , Transtornos do Neurodesenvolvimento , Animais , Anormalidades do Olho/genética , Estudos de Associação Genética , Humanos , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Receptores de Superfície Celular , Peixe-Zebra/genética
2.
Acta Neuropathol ; 141(3): 431-453, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33449170

RESUMO

Mutations in the sarcomeric protein titin, encoded by TTN, are emerging as a common cause of myopathies. The diagnosis of a TTN-related myopathy is, however, often not straightforward due to clinico-pathological overlap with other myopathies and the prevalence of TTN variants in control populations. Here, we present a combined clinico-pathological, genetic and biophysical approach to the diagnosis of TTN-related myopathies and the pathogenicity ascertainment of TTN missense variants. We identified 30 patients with a primary TTN-related congenital myopathy (CM) and two truncating variants, or one truncating and one missense TTN variant, or homozygous for one TTN missense variant. We found that TTN-related myopathies show considerable overlap with other myopathies but are strongly suggested by a combination of certain clinico-pathological features. Presentation was typically at birth with the clinical course characterized by variable progression of weakness, contractures, scoliosis and respiratory symptoms but sparing of extraocular muscles. Cardiac involvement depended on the variant position. Our biophysical analyses demonstrated that missense mutations associated with CMs are strongly destabilizing and exert their effect when expressed on a truncating background or in homozygosity. We hypothesise that destabilizing TTN missense mutations phenocopy truncating variants and are a key pathogenic feature of recessive titinopathies that might be amenable to therapeutic intervention.


Assuntos
Conectina/genética , Miotonia Congênita/diagnóstico , Miotonia Congênita/genética , Miotonia Congênita/patologia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Adulto Jovem
3.
Genet Med ; 22(12): 2029-2040, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32778822

RESUMO

PURPOSE: High throughput sequencing analysis has facilitated the rapid analysis of the entire titin (TTN) coding sequence. This has resulted in the identification of a growing number of recessive titinopathy patients. The aim of this study was to (1) characterize the causative genetic variants and clinical features of the largest cohort of recessive titinopathy patients reported to date and (2) to evaluate genotype-phenotype correlations in this cohort. METHODS: We analyzed clinical and genetic data in a cohort of patients with biallelic pathogenic or likely pathogenic TTN variants. The cohort included both previously reported cases (100 patients from 81 unrelated families) and unreported cases (23 patients from 20 unrelated families). RESULTS: Overall, 132 causative variants were identified in cohort members. More than half of the cases had hypotonia at birth or muscle weakness and a delayed motor development within the first 12 months of life (congenital myopathy) with causative variants located along the entire gene. The remaining patients had a distal or proximal phenotype and a childhood or later (noncongenital) onset. All noncongenital cases had at least one pathogenic variant in one of the final three TTN exons (362-364). CONCLUSION: Our findings suggest a novel association between the location of nonsense variants and the clinical severity of the disease.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Hipotonia Muscular , Criança , Conectina/genética , Estudos de Associação Genética , Humanos , Mutação , Fenótipo
4.
Ann Neurol ; 83(6): 1105-1124, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29691892

RESUMO

OBJECTIVE: Comprehensive clinical characterization of congenital titinopathy to facilitate diagnosis and management of this important emerging disorder. METHODS: Using massively parallel sequencing we identified 30 patients from 27 families with 2 pathogenic nonsense, frameshift and/or splice site TTN mutations in trans. We then undertook a detailed analysis of the clinical, histopathological and imaging features of these patients. RESULTS: All patients had prenatal or early onset hypotonia and/or congenital contractures. None had ophthalmoplegia. Scoliosis and respiratory insufficiency typically developed early and progressed rapidly, whereas limb weakness was often slowly progressive, and usually did not prevent independent walking. Cardiac involvement was present in 46% of patients. Relatives of 2 patients had dilated cardiomyopathy. Creatine kinase levels were normal to moderately elevated. Increased fiber size variation, internalized nuclei and cores were common histopathological abnormalities. Cap-like regions, whorled or ring fibers, and mitochondrial accumulations were also observed. Muscle magnetic resonance imaging showed gluteal, hamstring and calf muscle involvement. Western blot analysis showed a near-normal sized titin protein in all samples. The presence of 2 mutations predicted to impact both N2BA and N2B cardiac isoforms appeared to be associated with greatest risk of cardiac involvement. One-third of patients had 1 mutation predicted to impact exons present in fetal skeletal muscle, but not included within the mature skeletal muscle isoform transcript. This strongly suggests developmental isoforms are involved in the pathogenesis of this congenital/early onset disorder. INTERPRETATION: This detailed clinical reference dataset will greatly facilitate diagnostic confirmation and management of patients, and has provided important insights into disease pathogenesis. Ann Neurol 2018;83:1105-1124.


Assuntos
Cardiomiopatia Dilatada/congênito , Conectina/genética , Proteínas Musculares/genética , Músculo Esquelético/patologia , Feminino , Humanos , Masculino , Mutação/genética , Fenótipo , Isoformas de Proteínas/genética
5.
Ann Neurol ; 80(1): 101-11, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27159402

RESUMO

OBJECTIVE: To evaluate the diagnostic outcomes in a large cohort of congenital muscular dystrophy (CMD) patients using traditional and next generation sequencing (NGS) technologies. METHODS: A total of 123 CMD patients were investigated using the traditional approaches of histology, immunohistochemical analysis of muscle biopsy, and candidate gene sequencing. Undiagnosed patients available for further testing were investigated using NGS. RESULTS: Muscle biopsy and immunohistochemical analysis found deficiencies of laminin α2, α-dystroglycan, or collagen VI in 50% of patients. Candidate gene sequencing and chromosomal microarray established a genetic diagnosis in 32% (39 of 123). Of 85 patients presenting in the past 20 years, 28 of 51 who lacked a confirmed genetic diagnosis (55%) consented to NGS studies, leading to confirmed diagnoses in a further 11 patients. Using the combination of approaches, a confirmed genetic diagnosis was achieved in 51% (43 of 85). The diagnoses within the cohort were heterogeneous. Forty-five of 59 probands with confirmed or probable diagnoses had variants in genes known to cause CMD (76%), and 11 of 59 (19%) had variants in genes associated with congenital myopathies, reflecting overlapping features of these conditions. One patient had a congenital myasthenic syndrome, and 2 had microdeletions. Within the cohort, 5 patients had variants in novel (PIGY and GMPPB) or recently published genes (GFPT1 and MICU1), and 7 had variants in TTN or RYR1, large genes that are technically difficult to Sanger sequence. INTERPRETATION: These data support NGS as a first-line tool for genetic evaluation of patients with a clinical phenotype suggestive of CMD, with muscle biopsy reserved as a second-tier investigation. Ann Neurol 2016;80:101-111.


Assuntos
Predisposição Genética para Doença/genética , Distrofias Musculares/diagnóstico , Distrofias Musculares/genética , Adolescente , Adulto , Criança , Pré-Escolar , Colágeno Tipo VI/deficiência , Distroglicanas/deficiência , Variação Genética/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Laminina/deficiência , Músculo Esquelético/metabolismo , Adulto Jovem
6.
Brain ; 139(Pt 3): 674-91, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26700687

RESUMO

Congenital myopathies are a clinically and genetically heterogeneous group of muscle disorders characterized by congenital or early-onset hypotonia and muscle weakness, and specific pathological features on muscle biopsy. The phenotype ranges from foetal akinesia resulting in in utero or neonatal mortality, to milder disorders that are not life-limiting. Over the past decade, more than 20 new congenital myopathy genes have been identified. Most encode proteins involved in muscle contraction; however, mutations in ion channel-encoding genes are increasingly being recognized as a cause of this group of disorders. SCN4A encodes the α-subunit of the skeletal muscle voltage-gated sodium channel (Nav1.4). This channel is essential for the generation and propagation of the muscle action potential crucial to muscle contraction. Dominant SCN4A gain-of-function mutations are a well-established cause of myotonia and periodic paralysis. Using whole exome sequencing, we identified homozygous or compound heterozygous SCN4A mutations in a cohort of 11 individuals from six unrelated kindreds with congenital myopathy. Affected members developed in utero- or neonatal-onset muscle weakness of variable severity. In seven cases, severe muscle weakness resulted in death during the third trimester or shortly after birth. The remaining four cases had marked congenital or neonatal-onset hypotonia and weakness associated with mild-to-moderate facial and neck weakness, significant neonatal-onset respiratory and swallowing difficulties and childhood-onset spinal deformities. All four surviving cohort members experienced clinical improvement in the first decade of life. Muscle biopsies showed myopathic features including fibre size variability, presence of fibrofatty tissue of varying severity, without specific structural abnormalities. Electrophysiology suggested a myopathic process, without myotonia. In vitro functional assessment in HEK293 cells of the impact of the identified SCN4A mutations showed loss-of-function of the mutant Nav1.4 channels. All, apart from one, of the mutations either caused fully non-functional channels, or resulted in a reduced channel activity. Each of the affected cases carried at least one full loss-of-function mutation. In five out of six families, a second loss-of-function mutation was present on the trans allele. These functional results provide convincing evidence for the pathogenicity of the identified mutations and suggest that different degrees of loss-of-function in mutant Nav1.4 channels are associated with attenuation of the skeletal muscle action potential amplitude to a level insufficient to support normal muscle function. The results demonstrate that recessive loss-of-function SCN4A mutations should be considered in patients with a congenital myopathy.


Assuntos
Hipocinesia/diagnóstico , Hipocinesia/genética , Mutação/genética , Miopatias Congênitas Estruturais/diagnóstico , Miopatias Congênitas Estruturais/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Feminino , Células HEK293 , Humanos , Recém-Nascido , Masculino , Linhagem , Índice de Gravidade de Doença , Xenopus laevis
7.
Am J Hum Genet ; 92(6): 965-73, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23664120

RESUMO

Dominant congenital spinal muscular atrophy (DCSMA) is a disorder of developing anterior horn cells and shows lower-limb predominance and clinical overlap with hereditary spastic paraplegia (HSP), a lower-limb-predominant disorder of corticospinal motor neurons. We have identified four mutations in bicaudal D homolog 2 (Drosophila) (BICD2) in six kindreds affected by DCSMA, DCSMA with upper motor neuron features, or HSP. BICD2 encodes BICD2, a key adaptor protein that interacts with the dynein-dynactin motor complex, which facilitates trafficking of cellular cargos that are critical to motor neuron development and maintenance. We demonstrate that mutations resulting in amino acid substitutions in two binding regions of BICD2 increase its binding affinity for the cytoplasmic dynein-dynactin complex, which might result in the perturbation of BICD2-dynein-dynactin-mediated trafficking, and impair neurite outgrowth. These findings provide insight into the mechanism underlying both the static and the slowly progressive clinical features and the motor neuron pathology that characterize BICD2-associated diseases, and underscore the importance of the dynein-dynactin transport pathway in the development and survival of both lower and upper motor neurons.


Assuntos
Proteínas de Transporte/genética , Atrofia Muscular Espinal/genética , Mutação de Sentido Incorreto , Paraplegia/genética , Adulto , Idoso , Proteínas de Transporte/metabolismo , Criança , Pré-Escolar , Dineínas do Citoplasma/metabolismo , Feminino , Genes Dominantes , Ligação Genética , Estudo de Associação Genômica Ampla , Células HEK293 , Haplótipos , Humanos , Masculino , Proteínas Associadas aos Microtúbulos , Pessoa de Meia-Idade , Atrofia Muscular Espinal/congênito , Atrofia Muscular Espinal/metabolismo , Paraplegia/metabolismo , Linhagem , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Adulto Jovem
8.
Brain ; 138(Pt 2): 293-310, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25497877

RESUMO

Spinal muscular atrophy is a disorder of lower motor neurons, most commonly caused by recessive mutations in SMN1 on chromosome 5q. Cases without SMN1 mutations are subclassified according to phenotype. Spinal muscular atrophy, lower extremity-predominant, is characterized by lower limb muscle weakness and wasting, associated with reduced numbers of lumbar motor neurons and is caused by mutations in DYNC1H1, which encodes a microtubule motor protein in the dynein-dynactin complex and one of its cargo adaptors, BICD2. We have now identified 32 patients with BICD2 mutations from nine different families, providing detailed insights into the clinical phenotype and natural history of BICD2 disease. BICD2 spinal muscular atrophy, lower extremity predominant most commonly presents with delayed motor milestones and ankle contractures. Additional features at presentation include arthrogryposis and congenital dislocation of the hips. In all affected individuals, weakness and wasting is lower-limb predominant, and typically involves both proximal and distal muscle groups. There is no evidence of sensory nerve involvement. Upper motor neuron signs are a prominent feature in a subset of individuals, including one family with exclusively adult-onset upper motor neuron features, consistent with a diagnosis of hereditary spastic paraplegia. In all cohort members, lower motor neuron features were static or only slowly progressive, and the majority remained ambulant throughout life. Muscle MRI in six individuals showed a common pattern of muscle involvement with fat deposition in most thigh muscles, but sparing of the adductors and semitendinosus. Muscle pathology findings were highly variable and included pseudomyopathic features, neuropathic features, and minimal change. The six causative mutations, including one not previously reported, result in amino acid changes within all three coiled-coil domains of the BICD2 protein, and include a possible 'hot spot' mutation, p.Ser107Leu present in four families. We used the recently solved crystal structure of a highly conserved region of the Drosophila orthologue of BICD2 to further-explore how the p.Glu774Gly substitution inhibits the binding of BICD2 to Rab6. Overall, the features of BICD2 spinal muscular atrophy, lower extremity predominant are consistent with a pathological process that preferentially affects lumbar lower motor neurons, with or without additional upper motor neuron involvement. Defining the phenotypic features in this, the largest BICD2 disease cohort reported to date, will facilitate focused genetic testing and filtering of next generation sequencing-derived variants in cases with similar features.


Assuntos
Proteínas Associadas aos Microtúbulos/genética , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Mutação/genética , Linhagem , Fenótipo , Ligação Proteica , Coluna Vertebral/patologia , Adulto Jovem
9.
Am J Med Genet A ; 164A(3): 661-5, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24357578

RESUMO

The developmental course of cognitive deficits in individuals with neurofibromatosis type 1 (NF1) is unclear. The objectives of this study were to determine the natural history of cognitive function and MRI T2-hyperintesities (T2H) from childhood to adulthood and to examine whether the presence of discrete T2H in childhood can predict cognitive performance in adulthood. We present cognitive and structural neuroimaging data from 18 patients with NF1 and five sibling controls assessed prospectively across an 18-year period. Longitudinal analyses revealed a significant increase in general cognitive function in patients with NF1 over the study period. Improvements were limited to individuals with discrete T2H in childhood. Patients without lesions in childhood exhibited a stable profile. The number of T2H decreased over time, particularly discrete lesions. Lesions located within the cerebral hemispheres and deep white matter were primarily stable, whereas those located in the basal ganglia, thalamus and brainstem tended to resolve. Our results support the hypothesis that resolution of T2H is accompanied by an improvement in general cognitive performance, possibly as a result of increased efficiency within white matter tracts.


Assuntos
Cognição , Imageamento por Ressonância Magnética , Neurofibromatose 1/diagnóstico , Neurofibromatose 1/psicologia , Adolescente , Encéfalo/patologia , Estudos de Casos e Controles , Criança , Feminino , Humanos , Testes de Inteligência , Estudos Longitudinais , Masculino
10.
Ann Clin Transl Neurol ; 11(5): 1250-1266, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38544359

RESUMO

OBJECTIVE: Most families with heritable neuromuscular disorders do not receive a molecular diagnosis. Here we evaluate diagnostic utility of exome, genome, RNA sequencing, and protein studies and provide evidence-based recommendations for their integration into practice. METHODS: In total, 247 families with suspected monogenic neuromuscular disorders who remained without a genetic diagnosis after standard diagnostic investigations underwent research-led massively parallel sequencing: neuromuscular disorder gene panel, exome, genome, and/or RNA sequencing to identify causal variants. Protein and RNA studies were also deployed when required. RESULTS: Integration of exome sequencing and auxiliary genome, RNA and/or protein studies identified causal or likely causal variants in 62% (152 out of 247) of families. Exome sequencing alone informed 55% (83 out of 152) of diagnoses, with remaining diagnoses (45%; 69 out of 152) requiring genome sequencing, RNA and/or protein studies to identify variants and/or support pathogenicity. Arrestingly, novel disease genes accounted for <4% (6 out of 152) of diagnoses while 36.2% of solved families (55 out of 152) harbored at least one splice-altering or structural variant in a known neuromuscular disorder gene. We posit that contemporary neuromuscular disorder gene-panel sequencing could likely provide 66% (100 out of 152) of our diagnoses today. INTERPRETATION: Our results emphasize thorough clinical phenotyping to enable deep scrutiny of all rare genetic variation in phenotypically consistent genes. Post-exome auxiliary investigations extended our diagnostic yield by 81% overall (34-62%). We present a diagnostic algorithm that details deployment of genomic and auxiliary investigations to obtain these diagnoses today most effectively. We hope this provides a practical guide for clinicians as they gain greater access to clinical genome and transcriptome sequencing.


Assuntos
Sequenciamento do Exoma , Doenças Neuromusculares , Humanos , Doenças Neuromusculares/genética , Doenças Neuromusculares/diagnóstico , Masculino , Feminino , Adulto , Análise de Sequência de RNA/métodos , Criança , Adolescente , Exoma/genética , Pessoa de Meia-Idade , Adulto Jovem , Pré-Escolar , Sequenciamento de Nucleotídeos em Larga Escala , Lactente , Testes Genéticos/métodos
11.
Am J Med Genet A ; 161A(4): 659-66, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23427176

RESUMO

Neurofibromatosis type 1 (NF1) is a multisystem disease associated with a lifelong risk of debilitating and potentially life-limiting complications, however many adults with NF1 have no regular health surveillance. We interviewed and examined 17 young adults with NF1 between the ages of 25 and 33. Most had not been assessed for NF1-related complications within the previous 8 years, including patients with known serious vascular complications, for example, renal artery stenosis. Acute and/or chronic pain, particularly back and plexiform-related pain were common symptoms, and despite a significant impact on quality of life, was untreated in most instances. Symptom and examination-directed imaging revealed serious complications in 41% of the cohort. These included severe spinal cord compression (two cases), a highly SUV avid lesion suggestive of malignancy (one case), and a Juvenile Pilocytic Astrocytoma in a patient without any previous NF1-related complications. Few study participants had a good understanding of NF1, its associated risks and complications, and many had not sought appropriate medical advice as questions or problems arose. NF1-related cognitive deficits in some participants, and the lack of a clear source of expert medical advice for adults with NF1 likely contributed to poor health surveillance and management in this population. Overall, these findings suggest that many Australian adults with NF1 are at risk of serious and life-threatening medical complications, but are not accessing and receiving adequate health care. Access to multidisciplinary adult clinics that specialize in NF1 may address many of the unmet health needs of young adults with NF1.


Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Acessibilidade aos Serviços de Saúde , Neurofibromatose 1/epidemiologia , Adulto , Fatores Etários , Austrália/epidemiologia , Encéfalo/patologia , Comorbidade , Gerenciamento Clínico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Neurofibromatose 1/complicações , Neurofibromatose 1/diagnóstico , Tomografia por Emissão de Pósitrons , Medula Espinal/patologia
12.
Brain ; 135(Pt 6): 1714-23, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22628388

RESUMO

Autosomal dominant congenital spinal muscular atrophy is characterized by predominantly lower limb weakness and wasting, and congenital or early-onset contractures of the hip, knee and ankle. Mutations in TRPV4, encoding a cation channel, have recently been identified in one large dominant congenital spinal muscular atrophy kindred, but the genetic basis of dominant congenital spinal muscular atrophy in many families remains unknown. It has been hypothesized that differences in the timing and site of anterior horn cell loss in the central nervous system account for the variations in clinical phenotype between different forms of spinal muscular atrophy, but there has been a lack of neuropathological data to support this concept in dominant congenital spinal muscular atrophy. We report clinical, electrophysiology, muscle magnetic resonance imaging and histopathology findings in a four generation family with typical dominant congenital spinal muscular atrophy features, without mutations in TRPV4, and in whom linkage to other known dominant neuropathy and spinal muscular atrophy genes has been excluded. The autopsy findings in the proband, who died at 14 months of age from an unrelated illness, provided a rare opportunity to study the neuropathological basis of dominant congenital spinal muscular atrophy. There was a reduction in anterior horn cell number in the lumbar and, to a lesser degree, the cervical spinal cord, and atrophy of the ventral nerve roots at these levels, in the absence of additional peripheral nerve pathology or abnormalities elsewhere along the neuraxis. Despite the young age of the child at the time of autopsy, there was no pathological evidence of ongoing loss or degeneration of anterior horn cells suggesting that anterior horn cell loss in dominant congenital spinal muscular atrophy occurs in early life, and is largely complete by the end of infancy. These findings confirm that dominant congenital spinal muscular atrophy is a true form of spinal muscular atrophy caused by a loss of anterior horn cells localized to lumbar and cervical regions early in development.


Assuntos
Células do Corno Anterior/patologia , Saúde da Família , Ligação Genética , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Canais de Cátion TRPV/genética , Idoso , Autopsia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Atrofia Muscular Espinal/complicações , Miosinas/metabolismo , Fenótipo , Ultrassonografia Doppler
13.
Circ Genom Precis Med ; 16(5): 421-430, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37671549

RESUMO

BACKGROUND: Variants in the DMD gene, that encodes the cytoskeletal protein, dystrophin, cause a severe form of dilated cardiomyopathy (DCM) associated with high rates of heart failure, heart transplantation, and ventricular arrhythmias. Improved early detection of individuals at risk is needed. METHODS: Genetic testing of 40 male probands with a potential X-linked genetic cause of primary DCM was undertaken using multi-gene panel sequencing, multiplex polymerase chain reaction, and array comparative genomic hybridization. Variant location was assessed with respect to dystrophin isoform patterns and exon usage. Telomere length was evaluated as a marker of myocardial dysfunction in left ventricular tissue and blood. RESULTS: Four pathogenic/likely pathogenic DMD variants were found in 5 probands (5/40: 12.5%). Only one rare variant was identified by gene panel testing with 3 additional multi-exon deletion/duplications found following targeted assays for structural variants. All of the pathogenic/likely pathogenic DMD variants involved dystrophin exons that had percent spliced-in scores >90, indicating high levels of constitutive expression in the human adult heart. Fifteen DMD variant-negative probands (15/40: 37.5%) had variants in autosomal genes including TTN, BAG3, LMNA, and RBM20. Myocardial telomere length was reduced in patients with DCM irrespective of genotype. No differences in blood telomere length were observed between genotype-positive family members with/without DCM and controls. CONCLUSIONS: Primary genetic testing using multi-gene panels has a low yield and specific assays for structural variants are required if DMD-associated cardiomyopathy is suspected. Distinguishing X-linked causes of DCM from autosomal genes that show sex differences in clinical presentation is crucial for informed family management.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Distrofina , Adulto , Humanos , Masculino , Feminino , Distrofina/genética , Hibridização Genômica Comparativa , Linhagem , Genótipo , Fenótipo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética
15.
Eur J Hum Genet ; 29(1): 61-66, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32862205

RESUMO

X-linked myotubular myopathy (XLMTM) is a severe congenital myopathy characterised by generalised weakness and respiratory insufficiency. XLMTM is associated with pathogenic variants in MTM1; a gene encoding the lipid phosphatase myotubularin. Whole genome sequencing (WGS) of an exome-negative male proband with severe hypotonia, respiratory insufficiency and centralised nuclei on muscle biopsy identified a deep intronic MTM1 variant NG_008199.1(NM_000252.2):c.1468-577A>G, which strengthened a cryptic 5' splice site (A>G substitution at the +5 position). Muscle RNA sequencing was non-diagnostic due to low read depth. Reverse transcription PCR (RT-PCR) of muscle RNA confirmed the c.1468-577A>G variant activates inclusion of a pseudo-exon encoding a premature stop codon into all detected MTM1 transcripts. Western blot analysis establishes deficiency of myotubularin protein, consistent with the severe XLMTM phenotype. We expand the genotypic spectrum of XLMTM and highlight benefits of screening non-coding regions of MTM1 in male probands with phenotypically concordant XLMTM who remain undiagnosed following exome sequencing.


Assuntos
Códon sem Sentido , Miopatias Congênitas Estruturais/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Humanos , Lactente , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miopatias Congênitas Estruturais/patologia , Fenótipo , Sítios de Splice de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
Neurol Genet ; 7(1): e554, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33977140

RESUMO

OBJECTIVE: To describe the diagnostic utility of whole-genome sequencing and RNA studies in boys with suspected dystrophinopathy, for whom multiplex ligation-dependent probe amplification and exomic parallel sequencing failed to yield a genetic diagnosis, and to use remnant normal DMD splicing in 3 families to define critical levels of wild-type dystrophin bridging clinical spectrums of Duchenne to myalgia. METHODS: Exome, genome, and/or muscle RNA sequencing was performed for 7 males with elevated creatine kinase. PCR of muscle-derived complementary DNA (cDNA) studied consequences for DMD premessenger RNA (pre-mRNA) splicing. Quantitative Western blot was used to determine levels of dystrophin, relative to control muscle. RESULTS: Splice-altering intronic single nucleotide variants or structural rearrangements in DMD were identified in all 7 families. Four individuals, with abnormal splicing causing a premature stop codon and nonsense-mediated decay, expressed remnant levels of normally spliced DMD mRNA. Quantitative Western blot enabled correlation of wild-type dystrophin and clinical severity, with 0%-5% dystrophin conferring a Duchenne phenotype, 10% ± 2% a Becker phenotype, and 15% ± 2% dystrophin associated with myalgia without manifesting weakness. CONCLUSIONS: Whole-genome sequencing relied heavily on RNA studies to identify DMD splice-altering variants. Short-read RNA sequencing was regularly confounded by the effectiveness of nonsense-mediated mRNA decay and low read depth of the giant DMD mRNA. PCR of muscle cDNA provided a simple, yet informative approach. Highly relevant to genetic therapies for dystrophinopathies, our data align strongly with previous studies of mutant dystrophin in Becker muscular dystrophy, with the collective conclusion that a fractional increase in levels of normal dystrophin between 5% and 20% is clinically significant.

17.
Neuromuscul Disord ; 29(6): 456-467, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31130376

RESUMO

Myopathies due to recessive MYH7 mutations are exceedingly rare, reported in only two families to date. We describe three patients from two families (from Australia and the UK) with a myopathy caused by recessive mutations in MYH7. The Australian family was homozygous for a c.5134C > T, p.Arg1712Trp mutation, whilst the UK patient was compound heterozygous for a truncating (c.4699C > T; p.Gln1567*) and a missense variant (c.4664A > G; p.Glu1555Gly). All three patients shared key clinical features, including infancy/childhood onset, pronounced axial/proximal weakness, spinal rigidity, severe scoliosis, and normal cardiac function. There was progressive respiratory impairment necessitating non-invasive ventilation despite preserved ambulation, a combination of features often seen in SEPN1- or NEB-related myopathies. On biopsy, the Australian proband showed classical myosin storage myopathy features, while the UK patient showed multi-minicore like areas. To establish pathogenicity of the Arg1712Trp mutation, we expressed mutant MYH7 protein in COS-7 cells, observing abnormal mutant myosin aggregation compared to wild-type. We describe skinned myofiber studies of patient muscle and hypertrophy of type II myofibers, which may be a compensatory mechanism. In summary, we have expanded the phenotype of ultra-rare recessive MYH7 disease, and provide novel insights into associated changes in muscle physiology.


Assuntos
Miosinas Cardíacas/genética , Doenças Musculares/genética , Mutação , Cadeias Pesadas de Miosina/genética , Adolescente , Adulto , Animais , Células COS , Miosinas Cardíacas/metabolismo , Chlorocebus aethiops , Família , Feminino , Humanos , Masculino , Doenças Musculares/diagnóstico por imagem , Doenças Musculares/metabolismo , Miofibrilas/metabolismo , Miofibrilas/patologia , Cadeias Pesadas de Miosina/metabolismo , Fenótipo , Adulto Jovem
18.
Sci Transl Med ; 9(386)2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28424332

RESUMO

Exome and whole-genome sequencing are becoming increasingly routine approaches in Mendelian disease diagnosis. Despite their success, the current diagnostic rate for genomic analyses across a variety of rare diseases is approximately 25 to 50%. We explore the utility of transcriptome sequencing [RNA sequencing (RNA-seq)] as a complementary diagnostic tool in a cohort of 50 patients with genetically undiagnosed rare muscle disorders. We describe an integrated approach to analyze patient muscle RNA-seq, leveraging an analysis framework focused on the detection of transcript-level changes that are unique to the patient compared to more than 180 control skeletal muscle samples. We demonstrate the power of RNA-seq to validate candidate splice-disrupting mutations and to identify splice-altering variants in both exonic and deep intronic regions, yielding an overall diagnosis rate of 35%. We also report the discovery of a highly recurrent de novo intronic mutation in COL6A1 that results in a dominantly acting splice-gain event, disrupting the critical glycine repeat motif of the triple helical domain. We identify this pathogenic variant in a total of 27 genetically unsolved patients in an external collagen VI-like dystrophy cohort, thus explaining approximately 25% of patients clinically suggestive of having collagen VI dystrophy in whom prior genetic analysis is negative. Overall, this study represents a large systematic application of transcriptome sequencing to rare disease diagnosis and highlights its utility for the detection and interpretation of variants missed by current standard diagnostic approaches.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Transcriptoma/genética , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Humanos , Doenças Musculares/genética , Doenças Musculares/metabolismo , Mutação
19.
J Neuromuscul Dis ; 3(2): 209-225, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27854218

RESUMO

BACKGROUND: Molecular diagnostics in the genetic myopathies often requires testing of the largest and most complex transcript units in the human genome (DMD, TTN, NEB). Iteratively targeting single genes for sequencing has traditionally entailed high costs and long turnaround times. Exome sequencing has begun to supplant single targeted genes, but there are concerns regarding coverage and needed depth of the very large and complex genes that frequently cause myopathies. OBJECTIVE: To evaluate efficiency of next-generation sequencing technologies to provide molecular diagnostics for patients with previously undiagnosed myopathies. METHODS: We tested a targeted re-sequencing approach, using a 45 gene emulsion PCR myopathy panel, with subsequent sequencing on the Illumina platform in 94 undiagnosed patients. We compared the targeted re-sequencing approach to exome sequencing for 10 of these patients studied. RESULTS: We detected likely pathogenic mutations in 33 out of 94 patients with a molecular diagnostic rate of approximately 35%. The remaining patients showed variants of unknown significance (35/94 patients) or no mutations detected in the 45 genes tested (26/94 patients). Mutation detection rates for targeted re-sequencing vs. whole exome were similar in both methods; however exome sequencing showed better distribution of reads and fewer exon dropouts. CONCLUSIONS: Given that costs of highly parallel re-sequencing and whole exome sequencing are similar, and that exome sequencing now takes considerably less laboratory processing time than targeted re-sequencing, we recommend exome sequencing as the standard approach for molecular diagnostics of myopathies.


Assuntos
Doenças Musculares/diagnóstico , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Técnicas de Diagnóstico Molecular , Doenças Musculares/genética , Distrofias Musculares/diagnóstico , Distrofias Musculares/genética , Mutação , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
20.
Eur J Hum Genet ; 23(6): 883-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25182138

RESUMO

Variants in ACTA1, which encodes α-skeletal actin, cause several congenital myopathies, most commonly nemaline myopathy. Autosomal recessive variants comprise approximately 10% of ACTA1 myopathy. All recessive variants reported to date have resulted in loss of skeletal α-actin expression from muscle and severe weakness from birth. Targeted next-generation sequencing in two brothers with congenital muscular dystrophy with rigid spine revealed homozygous missense variants in ACTA1. Skeletal α-actin expression was preserved in these patients. This report expands the clinical and histological phenotype of ACTA1 disease to include congenital muscular dystrophy with rigid spine and dystrophic features on muscle biopsy. This represents a new class of recessive ACTA1 variants, which do not abolish protein expression.


Assuntos
Actinas/genética , Mutação de Sentido Incorreto , Miopatias Congênitas Estruturais/genética , Coluna Vertebral/patologia , Actinas/química , Actinas/metabolismo , Adulto , Sequência de Aminoácidos , Genes Recessivos , Humanos , Masculino , Dados de Sequência Molecular , Miopatias Congênitas Estruturais/diagnóstico , Polimorfismo de Nucleotídeo Único , Irmãos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa