Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 35(9): 3413-3428, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37338062

RESUMO

The kinases SNF1-RELATED KINASE 1 (SnRK1) and TARGET OF RAPAMYCIN (TOR) are central sensors of the energy status, linking this information via diverse regulatory mechanisms to plant development and stress responses. Despite the well-studied functions of SnRK1 and TOR under conditions of limited or ample energy availability, respectively, little is known about the extent to which the 2 sensor systems function and how they are integrated in the same molecular process or physiological context. Here, we demonstrate that both SnRK1 and TOR are required for proper skotomorphogenesis in etiolated Arabidopsis (Arabidopsis thaliana) seedlings, light-induced cotyledon opening, and regular development in light. Furthermore, we identify SnRK1 and TOR as signaling components acting upstream of light- and sugar-regulated alternative splicing events, expanding the known action spectra for these 2 key players in energy signaling. Our findings imply that concurring SnRK1 and TOR activities are required throughout various phases of plant development. Based on the current knowledge and our findings, we hypothesize that turning points in the activities of these sensor kinases, as expected to occur upon illumination of etiolated seedlings, instead of signaling thresholds reflecting the nutritional status may modulate developmental programs in response to altered energy availability.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Plântula/genética , Plântula/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sirolimo , Regulação da Expressão Gênica de Plantas/genética , Proteínas Serina-Treonina Quinases/genética
2.
Plant Cell ; 28(11): 2715-2734, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27803310

RESUMO

Plants use light as source of energy and information to detect diurnal rhythms and seasonal changes. Sensing changing light conditions is critical to adjust plant metabolism and to initiate developmental transitions. Here, we analyzed transcriptome-wide alterations in gene expression and alternative splicing (AS) of etiolated seedlings undergoing photomorphogenesis upon exposure to blue, red, or white light. Our analysis revealed massive transcriptome reprogramming as reflected by differential expression of ∼20% of all genes and changes in several hundred AS events. For more than 60% of all regulated AS events, light promoted the production of a presumably protein-coding variant at the expense of an mRNA with nonsense-mediated decay-triggering features. Accordingly, AS of the putative splicing factor REDUCED RED-LIGHT RESPONSES IN CRY1CRY2 BACKGROUND1, previously identified as a red light signaling component, was shifted to the functional variant under light. Downstream analyses of candidate AS events pointed at a role of photoreceptor signaling only in monochromatic but not in white light. Furthermore, we demonstrated similar AS changes upon light exposure and exogenous sugar supply, with a critical involvement of kinase signaling. We propose that AS is an integration point of signaling pathways that sense and transmit information regarding the energy availability in plants.


Assuntos
Processamento Alternativo/fisiologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Transcriptoma/genética , Processamento Alternativo/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa