Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Epilepsia ; 62(2): 285-302, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33426641

RESUMO

The safety of switching between generic products of antiseizure medications (ASMs) continues to be a hot topic in epilepsy management. The main reason for concern relates to the uncertainty on whether, and when, two generics found to be bioequivalent to the same brand (reference) product are bioequivalent to each other, and the risk of a switch between generics resulting in clinically significant changes in plasma ASM concentrations. This article addresses these concerns by discussing the distinction between bioequivalence and statistical testing for significant difference, the importance of intra-subject variability in interpreting bioequivalence studies, the stricter regulatory bioequivalence requirements applicable to narrow-therapeutic-index (NTI) drugs, and the extent by which currently available generic products of ASMs comply with such criteria. Data for 117 oral generic products of second-generation ASMs approved in Europe by the centralized, mutual recognition or decentralized procedure were analyzed based on a review of publicly accessible regulatory assessment reports. The analysis showed that for 99% of generic products assessed (after exclusion of gabapentin products), the 90% confidence intervals (90% CIs) of geometric mean ratios (test/reference) for AUC (area under the drug concentration vs time curve) were narrow and wholly contained within the acceptance interval (90%-111%) applied to NTI drugs. Intra-subject variability for AUC was <10% for 53 (88%) of the 60 products for which this measure was reported. Many gabapentin generics showed broader, 90% CIs for bioequivalence estimates, and greater intra-subject variability, compared with generics of other ASMs. When interpreted within the context of other available data, these results suggest that any risk of non-bioequivalence between these individual generic products is small, and that switches across these products are not likely to result in clinically relevant changes in plasma drug exposure. The potential for variability in exposure when switching across generics is likely to be greatest for gabapentin.


Assuntos
Anticonvulsivantes/farmacocinética , Equivalência Terapêutica , Área Sob a Curva , Variação Biológica Individual , Dibenzazepinas/farmacocinética , Substituição de Medicamentos , Medicamentos Genéricos , Europa (Continente) , Gabapentina/farmacocinética , Humanos , Lacosamida/farmacocinética , Lamotrigina/farmacocinética , Levetiracetam/farmacocinética , Oxcarbazepina/farmacocinética , Pregabalina/farmacocinética , Topiramato/farmacocinética , Vigabatrina/farmacocinética , Zonisamida/farmacocinética
2.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806023

RESUMO

We recently reported a new class of carbamate derivatives as anticonvulsants. Among these, 3-methylpentyl(4-sulfamoylphenyl)carbamate (MSPC) stood out as the most potent compound with ED50 values of 13 mg/kg (i.p.) and 28 mg/kg (p.o.) in the rat maximal electroshock test (MES). 3-Methylpropyl(4-sulfamoylphenyl)carbamate (MBPC), reported and characterized here, is an MSPC analogous compound with two less aliphatic carbon atoms in its structure. As both MSPC and MBPC are chiral compounds, here, we studied the carbonic anhydrase inhibitory and anticonvulsant action of both MBPC enantiomers in comparison to those of MSPC as well as their pharmacokinetic properties. Racemic-MBPC and its enantiomers showed anticonvulsant activity in the rat maximal electroshock (MES) test with ED50 values in the range of 19-39 mg/kg. (R)-MBPC had a 65% higher clearance than its enantiomer and, consequently, a lower plasma exposure (AUC) than (S)-MSBC and racemic-MSBC. Nevertheless, (S)-MBPC had a slightly better brain permeability than (R)-MBPC with a brain-to-plasma (AUC) ratio of 1.32 (S-enantiomer), 1.49 (racemate), and 1.27 (R-enantiomer). This may contribute to its better anticonvulsant-ED50 value. The clearance of MBPC enantiomers was more enantioselective than the brain permeability and MES-ED50 values, suggesting that their anticonvulsant activity might be due to multiple mechanisms of action.


Assuntos
Carbamatos/química , Sistema Nervoso Central/efeitos dos fármacos , Animais , Anticonvulsivantes/farmacologia , Área Sob a Curva , Encéfalo/efeitos dos fármacos , Carbamatos/farmacocinética , Anidrases Carbônicas/química , Eletrochoque , Masculino , Isoformas de Proteínas , Ratos , Ratos Sprague-Dawley , Convulsões/tratamento farmacológico , Solventes , Estereoisomerismo
3.
Epilepsia ; 61(8): 1543-1552, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32614073

RESUMO

The success rate from first time in man to regulatory approval of central nervous system (CNS) drugs is lower than the overall success rate across all therapeutic indications (eg, cardiovascular, infectious diseases). To understand the reasons for drug-candidate failure and to capture trends in antiseizure drug (ASD) design, we have analyzed the physicochemical and biopharmaceutical properties of marketed ASDs in comparison with new ASDs in development. Our comparative analysis included molecular weight (MW), logP, polar surface area (PSA), the "Lipinski rule of five," and the CNS Multiparameter Optimization (MPO) score. LogP is the logarithm of a drug-partition coefficient (P) between n-octanol and water. PSA is the molecule's surface sum of its polar atoms. ASDs' biopharmaceutical properties were classified according to their water solubility, permeability, and route of elimination as outlined by the Biopharmaceutics Classification System (BCS) and Biopharmaceutics Drug Disposition Classification System (BDDCS). For old ASDs (1912-1990), logP, PSA, and CNS MPO values ranged between 0.4 and 2.8, 37 and 87 Å2 , and 4.4 and 6.0, respectively. For second-generation ASDs (1990-2008), PSA values ranged between 39 and 116 Å2 . However, logP values showed a difference between the lipophilic (logP = 0.3-3.21) and hydrophilic (logP = -0.6 to -2.16) ASDs. For third-generation ASDs (2008-2020), logP and PSA ranged between 0.3 and 3.5 and between 57 and 76 Å2 , respectively. The mean CNS MPO scores of all marketed ASDs were similar, ranging between 4.9 and 5.4, and were similar to those of the ASDs in development (3.5-5.8). Most ASDs belong to BCS and BDDCS classes 1 and 2. MW, logP, CNS MPO score, and PSA assess lipophilicity and correlate with antiseizure activity. To succeed, a new small-molecule ASD must have MW < 375 and PSA < 140Å2 , belong to BCS and/or BDDCS class 1 or 2, and obey the Lipinski rule of five: logP < 5, MW < 500, and <5 and <10 of hydrogen-bond donors and acceptors, respectively. The similarity in the MW, logP, and PSA values of marketed and new drugs in development indicates a conservative trend in ASD design.


Assuntos
Anticonvulsivantes/química , Desenho de Fármacos , Desenvolvimento de Medicamentos , Anticonvulsivantes/farmacologia , Fenômenos Químicos , Aprovação de Drogas , Humanos , Peso Molecular
4.
Pharmacol Ther ; 226: 107866, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33895186

RESUMO

In 2020, racemic-fenfluramine was approved in the U.S. and Europe for the treatment of seizures associated with Dravet syndrome, through a restricted/controlled access program aimed at minimizing safety risks. Fenfluramine had been used extensively in the past as an appetite suppressant, but it was withdrawn from the market in 1997 when it was found to cause cardiac valvulopathy. Available evidence indicates that appetite suppression and cardiac valvulopathy are mediated by different serotonergic mechanisms. In particular, appetite suppression can be ascribed mainly to the enantiomers d-fenfluramine and d-norfenfluramine, the primary metabolite of d-fenfluramine, whereas cardiac valvulopathy can be ascribed mainly to d-norfenfluramine. Because of early observations of markedly improved seizure control in some forms of epilepsy, fenfluramine remained available in Belgium through a Royal Decree after 1997 for use in a clinical trial in patients with Dravet syndrome at average dosages lower than those generally prescribed for appetite suppression. More recently, double-blind placebo-controlled trials established its efficacy in the treatment of convulsive seizures associated with Dravet syndrome and of drop seizures associated with Lennox-Gastaut syndrome, at doses up to 0.7 mg/kg/day (maximum 26 mg/day). Although no cardiovascular toxicity has been associated with the use of fenfluramine in epilepsy, the number of patients exposed to date has been limited and only few patients had duration of exposure longer than 3 years. This article analyzes available evidence on the mechanisms involved in fenfluramine-induced appetite suppression, antiseizure effects and cardiovascular toxicity. Despite evidence that stimulation of 5-HT2B receptors (the main mechanism leading to cardiac valvulopathy) is not required for antiseizure activity, there are many critical gaps in understanding fenfluramine's properties which are relevant to its use in epilepsy. Particular emphasis is placed on the remarkable lack of publicly accessible information about the comparative activity of the individual enantiomers of fenfluramine and norfenfluramine in experimental models of seizures and epilepsy, and on receptors systems considered to be involved in antiseizure effects. Preliminary data suggest that l-fenfluramine retains prominent antiseizure effects in a genetic zebrafish model of Dravet syndrome. If these findings are confirmed and extended to other seizure/epilepsy models, there would be an incentive for a chiral switch from racemic-fenfluramine to l-fenfluramine, which could minimize the risk of cardiovascular toxicity and reduce the incidence of adverse effects such as loss of appetite and weight loss.


Assuntos
Reposicionamento de Medicamentos , Fenfluramina , Animais , Epilepsia/tratamento farmacológico , Fenfluramina/uso terapêutico , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Redução de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa