Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Cancer ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942989

RESUMO

BACKGROUND: Certain paediatric nervous system malignancies have dismal prognoses. Retinoic acid (RA) is used in neuroblastoma treatment, and preclinical data indicate potential benefit in selected paediatric brain tumour entities. However, limited single-agent efficacy necessitates combination treatment approaches. METHODS: We performed drug sensitivity profiling of 76 clinically relevant drugs in combination with RA in 16 models (including patient-derived tumouroids) of the most common paediatric nervous system tumours. Drug responses were assessed by viability assays, high-content imaging, and apoptosis assays and RA relevant pathways by RNAseq from treated models and patient samples obtained through the precision oncology programme INFORM (n = 2288). Immunoprecipitation detected BCL-2 family interactions, and zebrafish embryo xenografts were used for in vivo efficacy testing. RESULTS: Group 3 medulloblastoma (MBG3) and neuroblastoma models were highly sensitive to RA treatment. RA induced differentiation and regulated apoptotic genes. RNAseq analysis revealed high expression of BCL2L1 in MBG3 and BCL2 in neuroblastomas. Co-treatments with RA and BCL-2/XL inhibitor navitoclax synergistically decreased viability at clinically achievable concentrations. The combination of RA with navitoclax disrupted the binding of BIM to BCL-XL in MBG3 and to BCL-2 in neuroblastoma, inducing apoptosis in vitro and in vivo. CONCLUSIONS: RA treatment primes MBG3 and NB cells for apoptosis, triggered by navitoclax cotreatment.

2.
J Neurooncol ; 166(1): 99-112, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38184819

RESUMO

PURPOSE: Patients with MYC-amplified Group 3 medulloblastoma (MB) (subtype II) show poor progression-free survival rates. Class I histone deacetylase inhibitors (HDACi) are highly effective for the treatment of MYC-amplified MB in vitro and in vivo. Drug combination regimens including class I HDACi may represent an urgently needed novel treatment approach for this high risk disease. METHODS: A medium-throughput in vitro combination drug screen was performed in three MYC-amplified and one non-MYC-amplified MB cell line testing 75 clinically relevant drugs alone and in combination with entinostat. The drug sensitivity score (DSS) was calculated based on metabolic inhibition quantified by CellTiter-Glo. The six top synergistic combination hits were evaluated in a 5 × 5 combination matrix and a seven-ray design. Synergy was validated and characterized by cell counts, caspase-3-like-activity and poly-(ADP-ribose)-polymerase-(PARP)-cleavage. On-target activity of drugs was validated by immunoprecipitation and western blot. BCL-XL dependency of the observed effect was explored with siRNA mediated knockdown of BCL2L1, and selective inhibition with targeted compounds (A-1331852, A-1155463). RESULTS: 20/75 drugs effectively reduced metabolic activity in combination with entinostat in all three MYC-amplified cell lines (DSS ≥ 10). The combination entinostat and navitoclax showed the strongest synergistic interaction across all MYC-amplified cell lines. siRNA mediated knockdown of BCL2L1, as well as targeted inhibition with selective inhibitors showed BCL-XL dependency of the observed effect. Increased cell death was associated with increased caspase-3-like-activity. CONCLUSION: Our study identifies the combination of class I HDACi and BCL-XL inhibitors as a potential new approach for the treatment of MYC-amplified MB cells.


Assuntos
Benzamidas , Neoplasias Cerebelares , Meduloblastoma , Piridinas , Humanos , Apoptose , Caspase 3/metabolismo , Linhagem Celular Tumoral , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Combinação de Medicamentos , Interações Medicamentosas , Inibidores de Histona Desacetilases/farmacologia , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , RNA Interferente Pequeno
3.
J Neurooncol ; 168(2): 317-332, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38630384

RESUMO

INTRODUCTION: Patients with pediatric low-grade gliomas (pLGGs), the most common primary brain tumors in children, can often benefit from MAPK inhibitor (MAPKi) treatment. However, rapid tumor regrowth, also referred to as rebound growth, may occur once treatment is stopped, constituting a significant clinical challenge. METHODS: Four patient-derived pediatric glioma models were investigated to model rebound growth in vitro based on viable cell counts in response to MAPKi treatment and withdrawal. A multi-omics dataset (RNA sequencing and LC-MS/MS based phospho-/proteomics) was generated to investigate possible rebound-driving mechanisms. Following in vitro validation, putative rebound-driving mechanisms were validated in vivo using the BT-40 orthotopic xenograft model. RESULTS: Of the tested models, only a BRAFV600E-driven model (BT-40, with additional CDKN2A/Bdel) showed rebound growth upon MAPKi withdrawal. Using this model, we identified a rapid reactivation of the MAPK pathway upon MAPKi withdrawal in vitro, also confirmed in vivo. Furthermore, transient overactivation of key MAPK molecules at transcriptional (e.g. FOS) and phosphorylation (e.g. pMEK) levels, was observed in vitro. Additionally, we detected increased expression and secretion of cytokines (CCL2, CX3CL1, CXCL10 and CCL7) upon MAPKi treatment, maintained during early withdrawal. While increased cytokine expression did not have tumor cell intrinsic effects, presence of these cytokines in conditioned media led to increased attraction of microglia cells in vitro. CONCLUSION: Taken together, these data indicate rapid MAPK reactivation upon MAPKi withdrawal as a tumor cell intrinsic rebound-driving mechanism. Furthermore, increased secretion of microglia-recruiting cytokines may play a role in treatment response and rebound growth upon withdrawal, warranting further evaluation.


Assuntos
Neoplasias Encefálicas , Citocinas , Glioma , Microglia , Mutação , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Microglia/metabolismo , Microglia/efeitos dos fármacos , Glioma/metabolismo , Glioma/tratamento farmacológico , Glioma/patologia , Glioma/genética , Citocinas/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Inibidores de Proteínas Quinases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Criança , Camundongos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
4.
J Neurooncol ; 164(3): 617-632, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37783879

RESUMO

PURPOSE: MYC-driven Group 3 medulloblastoma (MB) (subtype II) is a highly aggressive childhood brain tumor. Sensitivity of MYC-driven MB to class I histone deacetylase inhibitors (HDACi) has been previously demonstrated in vitro and in vivo. In this study we characterize the transcriptional effects of class I HDACi in MYC-driven MB and explore beneficial drug combinations. METHODS: MYC-amplified Group 3 MB cells (HD-MB03) were treated with class I HDACi entinostat. Changes in the gene expression profile were quantified on a microarray. Bioinformatic assessment led to the identification of pathways affected by entinostat treatment. Five drugs interfering with these pathways (olaparib, idasanutlin, ribociclib, selinexor, vinblastine) were tested for synergy with entinostat in WST-8 metabolic activity assays in a 5 × 5 combination matrix design. Synergy was validated in cell count and flow cytometry experiments. The effect of entinostat and olaparib on DNA damage was evaluated by γH2A.X quantification in immunoblotting, fluorescence microscopy and flow cytometry. RESULTS: Entinostat treatment changed the expression of genes involved in 22 pathways, including downregulation of DNA damage response. The PARP1 inhibitors olaparib and pamiparib showed synergy with entinostat selectively in MYC-amplified MB cells, leading to increased cell death, decreased viability and increased formation of double strand breaks, as well as increased sensitivity to additional induction of DNA damage by doxorubicin. Non-MYC-amplified MB cells and normal human fibroblasts were not susceptible to this triple treatment. CONCLUSION: Our study identifies the combination of entinostat with olaparib as a new potential therapeutic approach for MYC-driven Group 3 MB.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Humanos , Criança , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Dano ao DNA , Linhagem Celular Tumoral
5.
J Neurooncol ; 165(3): 467-478, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37999877

RESUMO

PURPOSE: Although pediatric low-grade gliomas (pLGG) are the most common pediatric brain tumors, patient-derived cell lines reflecting pLGG biology in culture are scarce. This also applies to the most common pLGG subtype pilocytic astrocytoma (PA). Conventional cell culture approaches adapted from higher-grade tumors fail in PA due to oncogene-induced senescence (OIS) driving tumor cells into arrest. Here, we describe a PA modeling workflow using the Simian Virus large T antigen (SV40-TAg) to circumvent OIS. METHODS: 18 pLGG tissue samples (17 (94%) histological and/or molecular diagnosis PA) were mechanically dissociated. Tumor cell positive-selection using A2B5 was perfomed in 8/18 (44%) cases. All primary cell suspensions were seeded in Neural Stem Cell Medium (NSM) and Astrocyte Basal Medium (ABM). Resulting short-term cultures were infected with SV40-TAg lentivirus. Detection of tumor specific alterations (BRAF-duplication and BRAF V600E-mutation) by digital droplet PCR (ddPCR) at defined time points allowed for determination of tumor cell fraction (TCF) and evaluation of the workflow. DNA-methylation profiling and gene-panel sequencing were used for molecular profiling of primary samples. RESULTS: Primary cell suspensions had a mean TCF of 55% (+/- 23% (SD)). No sample in NSM (0/18) and ten samples in ABM (10/18) were successfully transduced. Three of these ten (30%) converted into long-term pLGG cell lines (TCF 100%), while TCF declined to 0% (outgrowth of microenvironmental cells) in 7/10 (70%) cultures. Young patient age was associated with successful model establishment. CONCLUSION: A subset of primary PA cultures can be converted into long-term cell lines using SV40-TAg depending on sample intrinsic (patient age) and extrinsic workflow-related (e.g. type of medium, successful transduction) parameters. Careful monitoring of sample-intrinsic and extrinsic factors optimizes the process.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Criança , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Fluxo de Trabalho , Astrocitoma/patologia , Glioma/patologia , Neoplasias Encefálicas/patologia
6.
J Neurooncol ; 163(1): 143-158, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37183219

RESUMO

PURPOSE: We and others have demonstrated that MYC-amplified medulloblastoma (MB) cells are susceptible to class I histone deacetylase inhibitor (HDACi) treatment. However, single drug treatment with HDACi has shown limited clinical efficacy. We hypothesized that addition of a second compound acting synergistically with HDACi may enhance efficacy. METHODS: We used a gene expression dataset to identify PLK1 as a second target in MB cells and validated the relevance of PLK1 in MB. We measured cell metabolic activity, viability, and cycle progression in MB cells after treatment with PLK1-specific inhibitors (PLK1i). Chou-Talalay synergy calculations were used to determine the nature of class I HDACi entinostat and PLK1i interaction which was validated. Finally, the clinical potential of the combination was assessed in the in vivo experiment. RESULTS: MYC-amplified tumor cells are highly sensitive towards treatment with ATP-competitive PLK1i as a monotherapy. Entinostat and PLK1i in combination act synergistically in MYC-driven MB cells, exerting cytotoxic effects at clinically relevant concentrations. The downstream effect is exerted via MYC-related pathways, pointing out the potential of MYC amplification as a clinically feasible predictive biomarker for patient selection. While entinostat significantly extended survival of mice implanted with orthotopic MYC-amplified MB PDX, there was no evidence of the improvement of survival when treating the animals with the combination. CONCLUSION: The combination of entinostat and PLK1i showed synergistic interaction in vitro, but not in vivo. Therefore, further screening of blood-brain barrier penetrating PLK1i is warranted to determine the true potential of the combination as no on-target activity was observed after PLK1i volasertib treatment in vivo.


Assuntos
Antineoplásicos , Neoplasias Cerebelares , Meduloblastoma , Camundongos , Animais , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Meduloblastoma/tratamento farmacológico , Meduloblastoma/metabolismo , Antineoplásicos/uso terapêutico , Neoplasias Cerebelares/tratamento farmacológico , Linhagem Celular Tumoral
7.
J Am Chem Soc ; 144(41): 18861-18875, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36200994

RESUMO

We report the first well-characterized selective chemical probe for histone deacetylase 10 (HDAC10) with unprecedented selectivity over other HDAC isozymes. HDAC10 deacetylates polyamines and has a distinct substrate specificity, making it unique among the 11 zinc-dependent HDAC hydrolases. Taking inspiration from HDAC10 polyamine substrates, we systematically inserted an amino group ("aza-scan") into the hexyl linker moiety of the approved drug Vorinostat (SAHA). This one-atom replacement (C→N) transformed SAHA from an unselective pan-HDAC inhibitor into a specific HDAC10 inhibitor. Optimization of the aza-SAHA structure yielded the HDAC10 chemical probe DKFZ-748, with potency and selectivity demonstrated by cellular and biochemical target engagement, as well as thermal shift assays. Cocrystal structures of our aza-SAHA derivatives with HDAC10 provide a structural rationale for potency, and chemoproteomic profiling confirmed exquisite cellular HDAC10-selectivity of DKFZ-748 across the target landscape of HDAC drugs. Treatment of cells with DKFZ-748, followed by quantification of selected polyamines, validated for the first time the suspected cellular function of HDAC10 as a polyamine deacetylase. Finally, in a polyamine-limiting in vitro tumor model, DKFZ-748 showed dose-dependent growth inhibition of HeLa cells. We expect DKFZ-748 and related probes to enable further studies on the enigmatic biology of HDAC10 and acetylated polyamines in both physiological and pathological settings.


Assuntos
Inibidores de Histona Desacetilases , Isoenzimas , Humanos , Vorinostat , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Células HeLa , Histona Desacetilases/química , Poliaminas/farmacologia , Zinco , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/química
8.
Chembiochem ; 23(14): e202200180, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35608330

RESUMO

Histone deacetylases (HDACs) are important epigenetic regulators involved in many diseases, especially cancer. Five HDAC inhibitors have been approved for anticancer therapy and many are in clinical trials. Among the 11 zinc-dependent HDACs, HDAC10 has received relatively little attention by drug discovery campaigns, despite its involvement, e. g., in the pathogenesis of neuroblastoma. This is due in part to a lack of robust enzymatic conversion assays. In contrast to the protein lysine deacetylase and deacylase activity of most other HDAC subtypes, it has recently been shown that HDAC10 has strong preferences for deacetylation of oligoamine substrates like acetyl-putrescine or -spermidine. Hence, it is also termed a polyamine deacetylase (PDAC). Here, we present the first fluorescent enzymatic conversion assay for HDAC10 using an aminocoumarin-labelled acetyl-spermidine derivative to measure its PDAC activity, which is suitable for high-throughput screening. Using this assay, we identified potent inhibitors of HDAC10-mediated spermidine deacetylation in vitro. Based on the oligoamine preference of HDAC10, we also designed inhibitors with a basic moiety in appropriate distance to the zinc binding hydroxamate that showed potent inhibition of HDAC10 with high selectivity, and we solved a HDAC10-inhibitor structure using X-ray crystallography. We could demonstrate selective cellular target engagement for HDAC10 but a lysosomal phenotype in neuroblastoma cells that was previously associated with HDAC10 inhibition was not observed. Thus, we have developed new chemical probes for HDAC10 that allow further clarification of the biological role of this enzyme.


Assuntos
Neuroblastoma , Espermidina , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Humanos , Neuroblastoma/patologia , Poliaminas/química , Espermidina/química , Espermidina/metabolismo , Zinco
9.
Pharmacol Res ; 175: 105996, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34848323

RESUMO

High throughput screening methods, measuring the sensitivity and resistance of tumor cells to drug treatments have been rapidly evolving. Not only do these screens allow correlating response profiles to tumor genomic features for developing novel predictors of treatment response, but they can also add evidence for therapy decision making in precision oncology. Recent analysis methods developed for either assessing single agents or combination drug efficacies enable quantification of dose-response curves with restricted symmetric fit settings. Here, we introduce iTReX, a user-friendly and interactive Shiny/R application, for both the analysis of mono- and combination therapy responses. The application features an extended version of the drug sensitivity score (DSS) based on the integral of an advanced five-parameter dose-response curve model and a differential DSS for combination therapy profiling. Additionally, iTReX includes modules that visualize drug target interaction networks and support the detection of matches between top therapy hits and the sample omics features to enable the identification of druggable targets and biomarkers. iTReX enables the analysis of various quantitative drug or therapy response readouts (e.g. luminescence, fluorescence microscopy) and multiple treatment strategies (drug treatments, radiation). Using iTReX we validate a cost-effective drug combination screening approach and reveal the application's ability to identify potential sample-specific biomarkers based on drug target interaction networks. The iTReX web application is accessible at https://itrex.kitz-heidelberg.de.


Assuntos
Antineoplásicos/administração & dosagem , Software , Protocolos de Quimioterapia Combinada Antineoplásica , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Quimioterapia Combinada , Ensaios de Triagem em Larga Escala , Humanos
10.
Int J Mol Sci ; 23(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35886887

RESUMO

In addition to involvement in epigenetic gene regulation, histone deacetylases (HDACs) regulate multiple cellular processes through mediating the activity of non-histone protein substrates. The knockdown of HDAC8 isozyme is associated with the inhibition of cell proliferation and apoptosis enhancement in several cancer cell lines. As shown in several studies, HDAC8 can be considered a potential target in the treatment of cancer forms such as childhood neuroblastoma. The present work describes the development of proteolysis targeting chimeras (PROTACs) of HDAC8 based on substituted benzhydroxamic acids previously reported as potent and selective HDAC8 inhibitors. Within this study, we investigated the HDAC8-degrading profiles of the synthesized PROTACs and their effect on the proliferation of neuroblastoma cells. The combination of in vitro screening and cellular testing demonstrated selective HDAC8 PROTACs that show anti-neuroblastoma activity in cells.


Assuntos
Inibidores de Histona Desacetilases , Histona Desacetilases , Neuroblastoma , Humanos , Linhagem Celular Tumoral/metabolismo , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Neuroblastoma/metabolismo , Proteólise , Proteínas Repressoras/metabolismo
11.
Arch Toxicol ; 92(8): 2649-2664, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29947893

RESUMO

High histone deacetylase (HDAC) 8 and HDAC10 expression levels have been identified as predictors of exceptionally poor outcomes in neuroblastoma, the most common extracranial solid tumor in childhood. HDAC8 inhibition synergizes with retinoic acid treatment to induce neuroblast maturation in vitro and to inhibit neuroblastoma xenograft growth in vivo. HDAC10 inhibition increases intracellular accumulation of chemotherapeutics through interference with lysosomal homeostasis, ultimately leading to cell death in cultured neuroblastoma cells. So far, no HDAC inhibitor covering HDAC8 and HDAC10 at micromolar concentrations without inhibiting HDACs 1, 2 and 3 has been described. Here, we introduce TH34 (3-(N-benzylamino)-4-methylbenzhydroxamic acid), a novel HDAC6/8/10 inhibitor for neuroblastoma therapy. TH34 is well-tolerated by non-transformed human skin fibroblasts at concentrations up to 25 µM and modestly impairs colony growth in medulloblastoma cell lines, but specifically induces caspase-dependent programmed cell death in a concentration-dependent manner in several human neuroblastoma cell lines. In addition to the induction of DNA double-strand breaks, HDAC6/8/10 inhibition also leads to mitotic aberrations and cell-cycle arrest. Neuroblastoma cells display elevated levels of neuronal differentiation markers, mirrored by formation of neurite-like outgrowths under maintained TH34 treatment. Eventually, after long-term treatment, all neuroblastoma cells undergo cell death. The combination of TH34 with plasma-achievable concentrations of retinoic acid, a drug applied in neuroblastoma therapy, synergistically inhibits colony growth (combination index (CI) < 0.1 for 10 µM of each). In summary, our study supports using selective HDAC inhibitors as targeted antineoplastic agents and underlines the therapeutic potential of selective HDAC6/8/10 inhibition in high-grade neuroblastoma.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Neuroblastoma/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/metabolismo , Histona Desacetilases/metabolismo , Humanos , Neuroblastoma/genética , Neuroblastoma/patologia , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Tretinoína/administração & dosagem , Células Tumorais Cultivadas
12.
J Immunol ; 195(11): 5421-31, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26519528

RESUMO

Histone deacetylase (HDAC) inhibitors (HDACi) are clinically approved anticancer drugs that have important immune-modulatory properties. We report the surprising finding that HDACi promote LPS-induced IL-1ß processing and secretion in human and murine dendritic cells and murine macrophages. HDACi/LPS-induced IL-1ß maturation and secretion kinetics differed completely from those observed upon inflammasome activation. Moreover, this pathway of IL-1ß secretion was dependent on caspase-8 but was independent of the inflammasome components NACHT, LRR, and PYD domains-containing protein 3, apoptosis-associated speck-like protein containing a carboxyl-terminal caspase-recruitment domain, and caspase-1. Genetic studies excluded HDAC6 and HDAC10 as relevant HDAC targets in this pathway, whereas pharmacological inhibitor studies implicated the involvement of HDAC11. Treatment of mice with HDACi in a dextran sodium sulfate-induced colitis model resulted in a strong increase in intestinal IL-1ß, confirming that this pathway is also operative in vivo. Thus, in addition to the conventional inflammasome-dependent IL-1ß cleavage pathway, dendritic cells and macrophages are capable of generating, secreting, and processing bioactive IL-1ß by a novel, caspase-8-dependent mechanism. Given the widespread interest in the therapeutic targeting of IL-1ß, as well as the use of HDACi for anti-inflammatory applications, these findings have substantial clinical implications.


Assuntos
Caspase 8/imunologia , Células Dendríticas/imunologia , Inibidores de Histona Desacetilases/farmacologia , Interleucina-1beta/metabolismo , Macrófagos/imunologia , Animais , Células da Medula Óssea , Proteínas de Transporte , Caspase 1/genética , Caspase 1/imunologia , Inibidores de Caspase/farmacologia , Caspases/genética , Caspases Iniciadoras , Células Cultivadas , Colite/induzido quimicamente , Sulfato de Dextrana , Histona Desacetilases/imunologia , Inflamassomos/imunologia , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR
13.
Proc Natl Acad Sci U S A ; 110(28): E2592-601, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23801752

RESUMO

Tumor cells activate autophagy in response to chemotherapy-induced DNA damage as a survival program to cope with metabolic stress. Here, we provide in vitro and in vivo evidence that histone deacetylase (HDAC)10 promotes autophagy-mediated survival in neuroblastoma cells. We show that both knockdown and inhibition of HDAC10 effectively disrupted autophagy associated with sensitization to cytotoxic drug treatment in a panel of highly malignant V-MYC myelocytomatosis viral-related oncogene, neuroblastoma derived-amplified neuroblastoma cell lines, in contrast to nontransformed cells. HDAC10 depletion in neuroblastoma cells interrupted autophagic flux and induced accumulation of autophagosomes, lysosomes, and a prominent substrate of the autophagic degradation pathway, p62/sequestosome 1. Enforced HDAC10 expression protected neuroblastoma cells against doxorubicin treatment through interaction with heat shock protein 70 family proteins, causing their deacetylation. Conversely, heat shock protein 70/heat shock cognate 70 was acetylated in HDAC10-depleted cells. HDAC10 expression levels in high-risk neuroblastomas correlated with autophagy in gene-set analysis and predicted treatment success in patients with advanced stage 4 neuroblastomas. Our results demonstrate that HDAC10 protects cancer cells from cytotoxic agents by mediating autophagy and identify this HDAC isozyme as a druggable regulator of advanced-stage tumor cell survival. Moreover, these results propose a promising way to considerably improve treatment response in the neuroblastoma patient subgroup with the poorest outcome.


Assuntos
Autofagia/fisiologia , Sobrevivência Celular/fisiologia , Histona Desacetilases/fisiologia , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSP70/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Humanos , Neuroblastoma/enzimologia , Neuroblastoma/patologia , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Blood ; 122(5): 684-93, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23801635

RESUMO

Natural killer (NK) cells are central effector cells during innate immune responses against cancer. Natural cytotoxicity receptors expressed by NK cells such as NKp30 are involved in the recognition of transformed cells. Recently, the novel B7 family member B7-H6, which is expressed on the cell surface of various tumor cells including hematological malignancies, was identified as an activating ligand for NKp30. To investigate expression and regulation of B7-H6, we generated monoclonal antibodies. Our study reveals that B7-H6 surface protein and messenger RNA (mRNA) expression in various tumor cell lines was downregulated upon treatment with pan- or class I histone deacetylase inhibitors (HDACi) as well as after small interfering RNA-mediated knockdown of the class I histone deacetylases (HDAC) 2 or 3. B7-H6 downregulation was associated with decreased B7-H6 reporter activity and reduced histone acetylation at the B7-H6 promoter. In certain primary lymphoma and hepatocellular carcinoma samples, B7-H6 mRNA levels were elevated and correlated with HDAC3 expression. Finally, downregulation of B7-H6 on tumor cells by HDACi reduced NKp30-dependent effector functions of NK cells. Thus, we identified a novel mechanism that governs B7-H6 expression in tumor cells that has implications for potential cancer treatments combining immunotherapy with HDACi.


Assuntos
Antígenos B7/genética , Inibidores de Histona Desacetilases/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Receptor 3 Desencadeador da Citotoxicidade Natural/metabolismo , Neoplasias/imunologia , Antígenos B7/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Células Hep G2 , Humanos , Células K562 , Células Matadoras Naturais/imunologia , Ligantes , Receptor 3 Desencadeador da Citotoxicidade Natural/agonistas , Neoplasias/genética , Neoplasias/metabolismo , Transfecção , Células Tumorais Cultivadas , Evasão Tumoral/efeitos dos fármacos , Evasão Tumoral/genética , Evasão Tumoral/imunologia
15.
Nucleic Acids Res ; 41(12): 6018-33, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23625969

RESUMO

MYCN is a master regulator controlling many processes necessary for tumor cell survival. Here, we unravel a microRNA network that causes tumor suppressive effects in MYCN-amplified neuroblastoma cells. In profiling studies, histone deacetylase (HDAC) inhibitor treatment most strongly induced miR-183. Enforced miR-183 expression triggered apoptosis, and inhibited anchorage-independent colony formation in vitro and xenograft growth in mice. Furthermore, the mechanism of miR-183 induction was found to contribute to the cell death phenotype induced by HDAC inhibitors. Experiments to identify the HDAC(s) involved in miR-183 transcriptional regulation showed that HDAC2 depletion induced miR-183. HDAC2 overexpression reduced miR-183 levels and counteracted the induction caused by HDAC2 depletion or HDAC inhibitor treatment. MYCN was found to recruit HDAC2 in the same complexes to the miR-183 promoter, and HDAC2 depletion enhanced promoter-associated histone H4 pan-acetylation, suggesting epigenetic changes preceded transcriptional activation. These data reveal miR-183 tumor suppressive properties in neuroblastoma that are jointly repressed by MYCN and HDAC2, and suggest a novel way to bypass MYCN function.


Assuntos
Histona Desacetilase 2/metabolismo , MicroRNAs/metabolismo , Neuroblastoma/genética , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/metabolismo , Animais , Morte Celular , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Regiões Promotoras Genéticas , Transdução de Sinais
16.
Int J Cancer ; 132(9): 2200-8, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23024001

RESUMO

Inhibition of histone deacetylase (HDAC) activity as stand-alone or combination therapy represents a promising therapeutic approach in oncology. The pan- or class I HDAC inhibitors (HDACi) currently approved or in clinical studies for oncology give rise to dose-limiting toxicities, presumably because of the inhibition of several HDACs. This could potentially be overcome by selective blockade of single HDAC family members. Here we report that HDAC11, the most recently identified zinc-dependent HDAC, is overexpressed in several carcinomas as compared to corresponding healthy tissues. HDAC11 depletion is sufficient to cause cell death and to inhibit metabolic activity in HCT-116 colon, PC-3 prostate, MCF-7 breast and SK-OV-3 ovarian cancer cell lines. The antitumoral effect induced can be mimicked by enforced expression of a catalytically impaired HDAC11 variant, suggesting that inhibition of the enzymatic activity of HDAC11 by small molecules could trigger the desired phenotypic changes. HDAC11 depletion in normal cells causes no changes in metabolic activity and viability, strongly suggesting that tumor-selective effects can be achieved. Altogether, our data show that HDAC11 plays a critical role in cancer cell survival and may represent a novel drug target in oncology.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/química , Glândulas Mamárias Humanas/enzimologia , Neoplasias/patologia , Bibliotecas de Moléculas Pequenas , Western Blotting , Caspase 3/metabolismo , Células Cultivadas , Citometria de Fluxo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Glândulas Mamárias Humanas/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Methods Mol Biol ; 2589: 75-85, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36255618

RESUMO

Reliable preclinical drug testing models for cancer research are urgently needed with zebrafish embryo models emerging as a powerful vertebrate model for xenotransplantation studies. Here, we describe the evaluation of toxicity, efficacy, and on-target activity of histone deacetylase (HDAC) inhibitors in a zebrafish embryo yolk sac xenotransplantation model of medulloblastoma and neuroblastoma cells. For this, we performed toxicity assays with our zebrafish drug library consisting of 28 clinically relevant targeted as well as chemotherapeutic drugs with zebrafish embryos. We further engrafted zebrafish embryos with fluorescently labeled pediatric tumor cells (SK-N-BE(2)-C, HD-MB03, or MED8A) and monitored the progression after HDAC inhibitor treatment of xenotransplanted tumors through tumor volume measurements with high-content confocal microscopy in a multi-well format. The on-target activity of HDAC inhibitors was verified through immunohistochemistry staining on paraffin-embedded early larvae. Overall, the zebrafish embryo xenotransplantation model allows for fast and cost-efficient in vivo evaluation of targeted drug toxicity, efficacy, and on-target activity in the field of precision oncology.


Assuntos
Neoplasias , Peixe-Zebra , Animais , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Xenoenxertos , Neoplasias/tratamento farmacológico , Medicina de Precisão , Modelos Animais de Doenças , Histona Desacetilases , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral
18.
Methods Mol Biol ; 2589: 179-193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36255625

RESUMO

Histone deacetylases are considered promising epigenetic targets for chemical protein degradation due to their diverse roles in physiological cellular functions and in the diseased state. Proteolysis-targeting chimeras (PROTACs) are bifunctional molecules that hijack the cell's ubiquitin-proteasome system (UPS). One of the promising targets for this approach is histone deacetylase 6 (HDAC6), which is highly expressed in several types of cancers and is linked to the aggressiveness of tumors. In the present work, we describe the synthesis of HDAC6 targeting PROTACs based on previously synthesized benzohydroxamates selectively inhibiting HDAC6 and how to assess their activities in different biochemical in vitro assays and in cellular assays. HDAC inhibition was determined using fluorometric assays, while the degradation ability of the PROTACs was assessed using western blot analysis.


Assuntos
Neoplasias , Complexo de Endopeptidases do Proteassoma , Humanos , Desacetilase 6 de Histona/metabolismo , Proteólise , Complexo de Endopeptidases do Proteassoma/metabolismo , Quimera/metabolismo , Ubiquitina/metabolismo , Histona Desacetilases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
19.
Mol Oncol ; 17(1): 37-58, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181342

RESUMO

Chemotherapy resistance is a persistent clinical problem in relapsed high-risk neuroblastomas. We tested a panel of 15 drugs for sensitization of neuroblastoma cells to the conventional chemotherapeutic vincristine, identifying tariquidar, an inhibitor of the transmembrane pump P-glycoprotein (P-gp/ABCB1), and the ERBB family inhibitor afatinib as the top resistance breakers. Both compounds were efficient in sensitizing neuroblastoma cells to vincristine in trypan blue exclusion assays and in inducing apoptotic cell death. The evaluation of ERBB signaling revealed no functional inhibition, that is, dephosphorylation of the downstream pathways upon afatinib treatment but direct off-target interference with P-gp function. Depletion of ABCB1, but not ERRB4, sensitized cells to vincristine treatment. P-gp inhibition substantially broke vincristine resistance in vitro and in vivo (zebrafish embryo xenograft). The analysis of gene expression datasets of more than 50 different neuroblastoma cell lines (primary and relapsed) and more than 160 neuroblastoma patient samples from the pediatric precision medicine platform INFORM (Individualized Therapy For Relapsed Malignancies in Childhood) confirmed a pivotal role of P-gp specifically in neuroblastoma resistance at relapse, while the ERBB family appears to play a minor part.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Neuroblastoma , Animais , Humanos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Vincristina/farmacologia , Afatinib , Peixe-Zebra/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neuroblastoma/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Receptores ErbB/metabolismo , Recidiva , Linhagem Celular Tumoral
20.
Clin Pharmacol Ther ; 114(4): 904-913, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37441736

RESUMO

Novel drug treatments for pediatric patients with cancer are urgently needed. Success of drug development in pediatric oncology has been promising, but many drugs still fail in translation from preclinical to clinical phases. To increase the translational potential, several improvements have been implemented, including the use of clinically achievable concentrations in the drug testing phase. Although pharmacokinetic (PK) parameters of numerous investigated drugs are published, a comprehensive PK overview of the most common drugs in pediatric oncology could guide preclinical trial design and improve the translatability into clinical trials. A review of the literature was conducted for PK parameters of 74 anticancer drugs, from the drug sensitivity profiling library of the INdividualized Therapy FOr Relapsed Malignancies in Childhood (INFORM) registry. PK data in the pediatric population were reported and complemented by adult parameters when no pediatric data were available. In addition, blood-brain barrier (BBB)-penetration assessment of drugs was provided by using the BBB score. Maximum plasma concentration was available for 73 (97%), area under the plasma concentration-time curve for 69 (92%), plasma protein binding for 66 (88%), plasma half-life for 57 (76%), time to maximum concentration for 54 (72%), clearance for 52 (69%), volume of distribution for 37 (49%), lowest plasma concentration reached by the drug before the next dose administration for 21 (28%), and steady-state concentration for 4 (5%) of drugs. Pediatric PK data were available for 48 (65%) drugs. We provide a comprehensive review of PK data for 74 drugs studied in pediatric oncology. This data set can serve as a reference to design experiments more closely mimicking drug PK conditions in patients, and may thereby increase the probability of successful clinical translation.


Assuntos
Antineoplásicos , Carcinoma , Adulto , Humanos , Criança , Recidiva Local de Neoplasia , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacocinética , Pesquisa , Oncologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa