Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(10): e2117416119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238642

RESUMO

SignificanceOver the years, many unusual chemical phenomena have been discovered at high pressures, yet our understanding of them is still very fragmentary. Our paper addresses this from the fundamental level by exploring the key chemical properties of atoms-electronegativity and chemical hardness-as a function of pressure. We have made an appropriate modification to the definition of Mulliken electronegativity to extend its applicability to high pressures. The change in atomic properties, which we observe, allows us to provide a unified framework explaining (and predicting) many chemical phenomena and the altered behavior of many elements under pressure.

2.
Chemphyschem ; : e202400532, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941264

RESUMO

It is known that various polysulfide species determine the color of sodalite-group minerals (haüyne, lazurite, slyudyankaite), and that heating induces their transformations and color change, but the mechanisms of the transitions are unknown. A prominent example is the decay of cyclic S6 molecule. Using density-functional simulations, we explore its main decay pathways into the most probable final reaction products (the pairs of radical anions  S3•-+  S3•- and S2•- +  S4•-).  It was found that the most favorable reaction path involves initial capture of one electron by the S6 molecule, which greatly facilitates its decay of S6 and leads to the opening of the S6 cycle, and subsequent decomposition of the thus formed chain radical anion, with a limiting energy barrier of ~0.4 eV. Neutral polysulfide molecules capture one electron with a significant energy reduction. The radical anions Sn•- (n = 2 - 6) are the most stable ones among corresponding species with the same n values and different charges. The capture of the second electron by S6•- occurs with a huge energy barrier (~2 eV). The results of the DFT calculations are in agreement with experimental data on the products of thermal conversions of extra-framework S-bearing groups in sodalite-group minerals.

3.
Phys Chem Chem Phys ; 26(25): 17854-17859, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38884592

RESUMO

We investigate the electronic sub-system of a recently designed Li8Au superconducting electride to reveal its many-body correlated nature and magnetic properties. Using maximally localized Wannier functions (MLWFs) to describe the interstitial anion electron (IAE) states, it was found that these states are partially occupied with a population of 1.5e- and have negligible hybridization with the almost completely filled p-Au states. The averaged interaction screened Hubbard parameter U for quasi-atomic IAE states evaluated by the constrained random-phase approximation (CRPA) method is 2 eV, comparable to the width of the electride band suggesting moderate electronic correlations. Using dynamical mean field theory (DMFT) approach we found that IAEs in Li8Au electride behave as magnetic centers and possess their own well localised magnetic moments of 0.5µB per quasi-atomic IAE. The obtained results deepen the understanding of the significance of many-body effects in the IAE subsystem of electronic states and reveal the mechanism for the formation of intrinsic magnetic moments on IAEs, which behave like ferromagnetic quasi-atoms in the Li8Au electride. Overall, the observed correlation effects in Li8Au emphasize their importance in materials with excess electrons confined in cavities.

4.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38597313

RESUMO

The notions of ionicity and covalency of chemical bonds, effective atomic charges, and decomposition of the cohesive energy into ionic and covalent terms are fundamental yet elusive. For example, different approaches give different values of atomic charges. Pursuing the goal of formulating a universal approach based on firm physical grounds (first-principles or non-empirical), we develop a formalism based on Wannier functions with atomic orbital symmetry and capable of defining these notions and giving numerically robust results that are in excellent agreement with traditional chemical thinking. Unexpectedly, in diamond-like boron phosphide (BP), we find charges of +0.68 on phosphorus and -0.68 on boron atoms, and this anomaly is explained by the Zintl-Klemm nature of this compound. We present a simple model that includes energies of the highest occupied cationic and lowest unoccupied anionic atomic orbitals, coordination numbers, and strength of interatomic orbital overlap. This model captures the essential physics of bonding and accurately reproduces all our results, including anomalous BP.

5.
Nano Lett ; 23(11): 5012-5018, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37212606

RESUMO

In this work, we determined the phase diagram and electronic properties of the Li-Cs system by using an evolutionary crystal structure prediction algorithm coupled with first-principles calculations. We found that Li-rich compounds are more easily formed in a wide range of pressures, while the only predicted Cs-rich compound LiCs3 is thermodynamically stable at pressures above 359 GPa. A topological analysis of crystal structures concludes that both Li6Cs and Li14Cs have a unique topology that has not been reported in existing intermetallics. Of particular interest is the fact that four Li-rich compounds (Li14Cs, Li8Cs, Li7Cs, and Li6Cs) are found to be superconductors with a high critical temperature (∼54 K for Li8Cs at 380 GPa), due to their peculiar structural topologies and notable charge transfer from Li to Cs atoms. Our results not only extend an in-depth understanding of the high-pressure behavior of intermetallic compounds but also provide a new route to design new superconductors.

6.
Proteins ; 91(7): 933-943, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36780132

RESUMO

Protein structure prediction is one of major problems of modern biophysics: current attempts to predict the tertiary protein structure from amino acid sequence are successful mostly when the use of big data and machine learning allows one to reduce the "prediction problem" to the "problem of recognition". Compared with recent successes of deep learning, classical predictive methods lag behind in their accuracy for the prediction of stable conformations. Therefore, in this work we extended the evolutionary algorithm USPEX to predict protein structure based on global optimization starting with the amino acid sequence. Moreover, we compared frequently used force fields for the task of protein structure prediction. Protein structure relaxation and energy calculations were performed using Tinker (with several different force fields) and Rosetta (with REF2015 force field) codes. To create new protein structure models in the USPEX algorithm, we developed novel variation operators. The test of the new method on seven proteins having (for simplicity) no cis-proline (with ω ≈ 0°) residues, and a length of up to 100 residues, revealed that our algorithm predicts tertiary structures of proteins with high accuracy. The comparison of the final potential energies of the predicted protein structures obtained using the USPEX and the Rosetta Abinitio approach showed that in most cases the developed algorithm found structures with close or even lower energy (Amber/Charmm/Oplsaal) and scoring function (REF2015). While USPEX has clearly demonstrated its ability to find very deep energy minima, our study showed that the existing force fields are not sufficiently accurate for accurate blind prediction of protein structures without further experimental verification.


Assuntos
Algoritmos , Proteínas , Conformação Proteica , Proteínas/química , Sequência de Aminoácidos , Estrutura Terciária de Proteína
7.
Phys Chem Chem Phys ; 25(13): 9294-9299, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36920023

RESUMO

Using ab initio evolutionary algorithm USPEX, we predict structures of sulfur molecules Sn (n = 2 - 21). It is shown that for n ≥ 5 stable structures of sulfur molecules are closed helical rings, which is in agreement with the experimental data and previous calculations. We investigate the stability of molecules using the following criteria: second-order energy difference (Δ2E), fragmentation energy (Efrag) and HOMO-LUMO gaps. The S8 molecule has the highest value of Δ2E and forms the most common allotropic form of sulfur (orthorhombic α-S), into which all other modifications convert over time at room temperature. Commonly found molecules S12 and S6 also have strongly positive Δ2E. Another well-known molecule, S7, has negative Δ2E, but at temperatures above 900 K has positive second-order free energy difference Δ2G. Generally, Δ2E (or Δ2G at finite temperatures) is a quantitative measure of the stability allowing one to predict the ease of formation of molecules and corresponding molecular crystals. Temperature dependence of the above-mentioned measures of stability explains a wide range of facts about sulfur crystalline allotropes, molecules in the gas phase, etc.

8.
Phys Chem Chem Phys ; 25(45): 30960-30965, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37937503

RESUMO

We investigate the role of interstitial electronic states in the metal-to-semiconductor transition and the origin of the volume collapse in Ca2N during the pressure-induced phase transitions accompanied by changes of electride subspace dimensionality. Our findings highlight the importance of correlation effects in the electride subsystem as an essential component of the complex phase transformation mechanism. By employing a simplified model that incorporates the distortion of the local environment surrounding the interstitial quasi-atom (ISQ) which emerges under pressure and solving this model by Dynamical Mean Field Theory (DMFT), we successfully reproduced the evolution between the metallic and semiconducting phases and captured the remarkable volume collapse. Central to this observation is a significant enhancement of the localization of excess electrons and the emergence of antiferromagnetic pairing among them, leading to a spin-state transition with a notable reduction in the magnetic moment on the interstitial states.

9.
Phys Rev Lett ; 128(3): 035703, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35119889

RESUMO

The origin of water on the Earth is a long-standing mystery, requiring a comprehensive search for hydrous compounds, stable at conditions of the deep Earth and made of Earth-abundant elements. Previous studies usually focused on the current range of pressure-temperature conditions in the Earth's mantle and ignored a possible difference in the past, such as the stage of the core-mantle separation. Here, using ab initio evolutionary structure prediction, we find that only two magnesium hydrosilicate phases are stable at megabar pressures, α-Mg_{2}SiO_{5}H_{2} and ß-Mg_{2}SiO_{5}H_{2}, stable at 262-338 GPa and >338 GPa, respectively (all these pressures now lie within the Earth's iron core). Both are superionic conductors with quasi-one-dimensional proton diffusion at relevant conditions. In the first 30 million years of Earth's history, before the Earth's core was formed, these must have existed in the Earth, hosting much of Earth's water. As dense iron alloys segregated to form the Earth's core, Mg_{2}SiO_{5}H_{2} phases decomposed and released water. Thus, now-extinct Mg_{2}SiO_{5}H_{2} phases have likely contributed in a major way to the evolution of our planet.

10.
J Chem Phys ; 157(12): 124704, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36182427

RESUMO

The discovery of new magnetic materials is a big challenge in the field of modern materials science. We report the development of a new extension of the evolutionary algorithm USPEX, enabling the search for half-metals (materials that are metallic only in one spin channel) and hard magnetic materials. First, we enabled the simultaneous optimization of stoichiometries, crystal structures, and magnetic structures of stable phases. Second, we developed a new fitness function for half-metallic materials that can be used for predicting half-metals through an evolutionary algorithm. We used this extended technique to predict new, potentially hard magnets and rediscover known half-metals. In total, we report five promising hard magnets with high energy product (|BH|MAX), anisotropy field (Ha), and magnetic hardness (κ) and a few half-metal phases in the Cr-O system. A comparison of our predictions with experimental results, including the synthesis of a newly predicted antiferromagnetic material (WMnB2), shows the robustness of our technique.

11.
Phys Rev Lett ; 127(11): 117001, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34558917

RESUMO

The discoveries of high-temperature superconductivity in H_{3}S and LaH_{10} have excited the search for superconductivity in compressed hydrides, finally leading to the first discovery of a room-temperature superconductor in a carbonaceous sulfur hydride. In contrast to rapidly expanding theoretical studies, high-pressure experiments on hydride superconductors are expensive and technically challenging. Here, we experimentally discovered superconductivity in two new phases, Fm3[over ¯]m-CeH_{10} (SC-I phase) and P6_{3}/mmc-CeH_{9} (SC-II phase) at pressures that are much lower (<100 GPa) than those needed to stabilize other polyhydride superconductors. Superconductivity was evidenced by a sharp drop of the electrical resistance to zero and decreased critical temperature in deuterated samples and in external magnetic field. SC-I has T_{c}=115 K at 95 GPa, showing an expected decrease in further compression due to the decrease of the electron-phonon coupling (EPC) coefficient λ (from 2.0 at 100 GPa to 0.8 at 200 GPa). SC-II has T_{c}=57 K at 88 GPa, rapidly increasing to a maximum T_{c}∼100 K at 130 GPa, and then decreasing in further compression. According to the theoretical calculation, this is due to a maximum of λ at the phase transition from P6_{3}/mmc-CeH_{9} into a symmetry-broken modification C2/c-CeH_{9}. The pressure-temperature conditions of synthesis affect the actual hydrogen content and the actual value of T_{c}. Anomalously low pressures of stability of cerium superhydrides make them appealing for studies of superhydrides and for designing new superhydrides with stability at even lower pressures.

12.
Phys Chem Chem Phys ; 23(27): 14889-14897, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34223584

RESUMO

Pd-Bi nanoparticles show high efficiency in catalyzing gluconic acid production by the glucose oxidation reaction. Although this type of catalyst was studied for some time, the correlation between bismuth content and catalytic activity is still unclear. Moreover, there is little information on the principles of the formation of Pd-Bi nanoparticles. In this work, the relation between bismuth content and the activity and selectivity of the PdxBiy/Al2O3 catalyst in the glucose oxidation process was studied. The catalytic samples were prepared by co-impregnation of the alumina support utilizing the metal-organic precursors of Pd and Bi. The samples obtained were tested in the glucose oxidation reaction and were studied by transmission electron microscopy (TEM), X-ray fluorescence analysis, X-ray photoelectron spectroscopy (XPS), and BET adsorption. It has been found that the Pd3 : Bi1 atomic ratio grants the highest catalytic efficiency for the studied samples. To explain this, we predicted stable Pd-Bi nanoparticles using ab initio evolutionary algorithm USPEX. The calculations demonstrate that nanoparticles tend to form Pd(core)-Bi(shell) structures turning to a crown-jewel morphology at lower Bi concentration, thus exposing the active Pd centers while maintaining the promoting effect of Bi.

13.
Phys Chem Chem Phys ; 23(30): 15989-15993, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34318813

RESUMO

On the basis of the first-principles evolutionary crystal structure prediction of stable compounds in the Cu-F system, we predict two experimentally unknown stable phases - Cu2F5 and CuF3. Cu2F5 comprises two interacting magnetic subsystems with Cu atoms in the oxidation states +2 and +3. CuF3 contains magnetic Cu3+ ions forming a lattice by antiferromagnetic coupling. We showed that some or all of Cu3+ ions can be reduced to Cu2+ by electron doping, as in the well-known KCuF3. Significant similarities between the electronic structures calculated in the framework of DFT+U suggest that doped CuF3 and Cu2F5 may exhibit high-Tc superconductivity with the same mechanism as in cuprates.

14.
Phys Chem Chem Phys ; 23(46): 26178-26184, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34807199

RESUMO

Oxidation is a unique process that significantly changes the structure and properties of a material. Doping of h-BN by oxygen is a hot topic in material science leading to the possibility of synthesis of novel 2D structures with customized electronic properties. It is still unclear how the atomic structure changes in the presence of external atoms during the oxidation of h-BN. We predict novel two-dimensional (2D) arrangements of boron oxynitride using the evolutionary algorithm of crystal structure prediction USPEX. All considered structures demonstrate semiconducting properties with a reduced bandgap compared with h-BN. Both molecular dynamics and phonon calculations show the dynamical stability of the new 2D B5N3O2 phase, and our calculations demonstrate that it can form a bulk layered structure with an interlayer distance larger than that of pure h-BN. The optical characterization shows a redshift of the absorption spectrum compared with pure h-BN. Incorporation of oxygen into the structure of 2D BN during synthesis or oxidation can dramatically change the covalent network of h-BN while preserving its two-dimensionality and flatness, following the presence of local dipole moments which could improve the piezoelectric properties.

15.
J Phys Chem A ; 125(18): 3936-3942, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33938213

RESUMO

C-H-N-O system is central for organic chemistry and biochemistry and plays a major role in planetary science (dominating the composition of "ice giants" Uranus and Neptune). The inexhaustible chemical diversity of this system at normal conditions explains its role as the basis of all known life, but the chemistry of this system at high pressures and temperatures of planetary interiors is poorly known. Using ab initio evolutionary algorithm USPEX, we performed an extensive study of the phase diagram of the C-H-N-O system at pressures of 50, 200, and 400 GPa and temperatures up to 3000 K. Seven novel thermodynamically stable phases were predicted, including quaternary polymeric crystal C2H2N2O2 and several new N-O and H-N-O compounds. We describe the main patterns of changes in the chemistry of the C-H-N-O system under pressure and confirm that diamond should be formed at conditions of the middle-ice layers of Uranus and Neptune. We also provide the detailed CH4-NH3-H2O phase diagrams at high pressures, which are important for further improvement of the models of ice giants, and point out that current models are clearly deficient. In particular, in the existing models, Uranus and Neptune are assumed to have identical composition, nearly identical pressure-temperature profiles, and a single convecting middle layer ("mantle") made of a mixture of H2O/CH4/NH3 in the ratio of 56.5:32.5:11. Here, we provide new insights, shedding light into the difference of heat flows from Uranus and Neptune, which require them to have different compositions, pressure-temperature conditions, and a more complex internal structure.

16.
J Chem Phys ; 155(18): 184503, 2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34773959

RESUMO

We have performed a combined experimental and theoretical study of ethane and methane at high pressures of up to 120 GPa at 300 K using x-ray diffraction and Raman spectroscopies and the USPEX ab initio evolutionary structural search algorithm, respectively. For ethane, we have determined the crystallization point, for room temperature, at 2.7 GPa and also the low pressure crystal structure (phase A). This crystal structure is orientationally disordered (plastic phase) and deviates from the known crystal structures for ethane at low temperatures. Moreover, a pressure induced phase transition has been identified, for the first time, at 13.6 GPa to a monoclinic phase B, the structure of which is solved based on good agreement with the experimental results and theoretical predictions. For methane, our x-ray diffraction measurements are in agreement with the previously reported high-pressure structures and equation of state (EOS). We have determined the EOSs of ethane and methane, which provides a solid basis for the discussion of their relative stability at high pressures.

17.
Proc Natl Acad Sci U S A ; 115(40): 9945-9950, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30232258

RESUMO

Gold is a very inert element, which forms relatively few compounds. Among them is a unique material-mineral calaverite, [Formula: see text] Besides being the only compound in nature from which one can extract gold on an industrial scale, it is a rare example of a natural mineral with incommensurate crystal structure. Moreover, it is one of few systems based on Au, which become superconducting (at elevated pressure or doped by Pd and Pt). Using ab initio calculations we theoretically explain these unusual phenomena in the picture of negative charge-transfer energy and self-doping, with holes being largely in the Te [Formula: see text] bands. This scenario naturally explains incommensurate crystal structure of [Formula: see text], and it also suggests a possible mechanism of superconductivity. An ab initio evolutionary search for stable compounds in the Au-Te system confirms stability of [Formula: see text] and [Formula: see text] and leads to a prediction of an as yet unknown stable compound AuTe, which until now has not been synthesized.

18.
Angew Chem Int Ed Engl ; 60(19): 10791-10797, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33629789

RESUMO

Deep-ultraviolet nonlinear optical (DUV NLO) materials are attracting increasing attention because of their structural diversity and complexity. Using the two-dimensional (2D) crystal structure prediction method combined with the first-principles calculations, here we propose layered 18-membered-ring (18MR) boron oxide B2 O3 polymorphs as high-performance NLO materials. 18MR-B2 O3 with the AA and AB stackings are potential DUV NLO materials. The superior performing 18MR-B2 O3 AB has an unprecedentedly high second harmonic generation coefficient of 1.63 pm V-1 , the largest among the DUV NLO materials, three times larger than that of the advanced DUV NLO material KBe2 BO3 F2 and comparable to that of ß-BaB2 O4 . Its unusually large birefringence of 0.196 at 400 nm guarantees the phase-matching wavelength λPM to reach this material's extreme absorption edge of ≈154 nm.

19.
J Am Chem Soc ; 142(6): 2803-2811, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31967807

RESUMO

Ongoing search for room-temperature superconductivity is inspired by the unique properties of the electron-phonon interaction in metal superhydrides. Encouraged by the recently found highest-TC superconductor fcc-LaH10, here we discover several superhydrides of another lanthanoid, neodymium. We identify three novel metallic Nd-H phases at pressures ranging from 85 to 135 GPa: I4/mmm-NdH4, C2/c-NdH7, and P63/mmc-NdH9, synthesized by laser-heating metal samples in NH3BH3 media for in situ generation of hydrogen. A lower trihydride Fm3̅m-NdH3 is found at pressures from 2 to 52 GPa. I4/mmm-NdH4 and C2/c-NdH7 are stable from 135 to 85 GPa, and P63/mmc-NdH9 is stable from 110 to 130 GPa. Measurements of the electrical resistance of NdH9 demonstrate a possible superconducting transition at ∼4.5 K in P63/mmc-NdH9. Our theoretical calculations predict that all of the neodymium hydrides have antiferromagnetic order at pressures below 150 GPa and represent one of the first discovered examples of strongly correlated superhydrides with large exchange spin-splitting in the electronic band structure (>450 meV). The critical Néel temperatures for new neodymium hydrides are estimated using the mean-field approximation to be about 4 K (NdH4), 251 K (NdH7), and 136 K (NdH9).

20.
Phys Rev Lett ; 125(25): 255702, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416341

RESUMO

We report a new hydrogen clathrate hydrate synthesized at 1.2 GPa and 298 K documented by single-crystal x-ray diffraction, Raman spectroscopy, and first-principles calculations. The oxygen sublattice of the new clathrate hydrate matches that of ice II, while hydrogen molecules are in the ring cavities, which results in the trigonal R3c or R3[over ¯]c space group (proton ordered or disordered, respectively) and the composition of (H_{2}O)_{6}H_{2}. Raman spectroscopy and theoretical calculations reveal a hydrogen disordered nature of the new phase C_{1}^{'}, distinct from the well-known ordered C_{1} clathrate, to which this new structure transforms upon compression and/or cooling. This new clathrate phase can be viewed as a realization of a disordered ice II, unobserved before, in contrast to all other ordered ice structures.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa