Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell ; 187(2): 276-293.e23, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38171360

RESUMO

During development, morphogens pattern tissues by instructing cell fate across long distances. Directly visualizing morphogen transport in situ has been inaccessible, so the molecular mechanisms ensuring successful morphogen delivery remain unclear. To tackle this longstanding problem, we developed a mouse model for compromised sonic hedgehog (SHH) morphogen delivery and discovered that endocytic recycling promotes SHH loading into signaling filopodia called cytonemes. We optimized methods to preserve in vivo cytonemes for advanced microscopy and show endogenous SHH localized to cytonemes in developing mouse neural tubes. Depletion of SHH from neural tube cytonemes alters neuronal cell fates and compromises neurodevelopment. Mutation of the filopodial motor myosin 10 (MYO10) reduces cytoneme length and density, which corrupts neuronal signaling activity of both SHH and WNT. Combined, these results demonstrate that cytoneme-based signal transport provides essential contributions to morphogen dispersion during mammalian tissue development and suggest MYO10 is a key regulator of cytoneme function.


Assuntos
Estruturas da Membrana Celular , Miosinas , Tubo Neural , Transdução de Sinais , Animais , Camundongos , Transporte Biológico , Estruturas da Membrana Celular/metabolismo , Proteínas Hedgehog/metabolismo , Miosinas/metabolismo , Pseudópodes/metabolismo , Tubo Neural/citologia , Tubo Neural/metabolismo
2.
Cell Mol Life Sci ; 79(2): 119, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119540

RESUMO

During development and tissue homeostasis, cells must communicate with their neighbors to ensure coordinated responses to instructional cues. Cues such as morphogens and growth factors signal at both short and long ranges in temporal- and tissue-specific manners to guide cell fate determination, provide positional information, and to activate growth and survival responses. The precise mechanisms by which such signals traverse the extracellular environment to ensure reliable delivery to their intended cellular targets are not yet clear. One model for how this occurs suggests that specialized filopodia called cytonemes extend between signal-producing and -receiving cells to function as membrane-bound highways along which information flows. A growing body of evidence supports a crucial role for cytonemes in cell-to-cell communication. Despite this, the molecular mechanisms by which cytonemes are initiated, how they grow, and how they deliver specific signals are only starting to be revealed. Herein, we discuss recent advances toward improved understanding of cytoneme biology. We discuss similarities and differences between cytonemes and other types of cellular extensions, summarize what is known about how they originate, and discuss molecular mechanisms by which their activity may be controlled in development and tissue homeostasis. We conclude by highlighting important open questions regarding cytoneme biology, and comment on how a clear understanding of their function may provide opportunities for treating or preventing disease.


Assuntos
Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Animais , Comunicação Celular , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/metabolismo , Morfogênese , Pseudópodes/metabolismo , Transdução de Sinais
3.
EMBO J ; 35(12): 1254-75, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27220849

RESUMO

Membrane-less organelles in cells are large, dynamic protein/protein or protein/RNA assemblies that have been reported in some cases to have liquid droplet properties. However, the molecular interactions underlying the recruitment of components are not well understood. Herein, we study how the ability to form higher-order assemblies influences the recruitment of the speckle-type POZ protein (SPOP) to nuclear speckles. SPOP, a cullin-3-RING ubiquitin ligase (CRL3) substrate adaptor, self-associates into higher-order oligomers; that is, the number of monomers in an oligomer is broadly distributed and can be large. While wild-type SPOP localizes to liquid nuclear speckles, self-association-deficient SPOP mutants have a diffuse distribution in the nucleus. SPOP oligomerizes through its BTB and BACK domains. We show that BTB-mediated SPOP dimers form linear oligomers via BACK domain dimerization, and we determine the concentration-dependent populations of the resulting oligomeric species. Higher-order oligomerization of SPOP stimulates CRL3(SPOP) ubiquitination efficiency for its physiological substrate Gli3, suggesting that nuclear speckles are hotspots of ubiquitination. Dynamic, higher-order protein self-association may be a general mechanism to concentrate functional components in membrane-less cellular bodies.


Assuntos
Núcleo Celular/metabolismo , Substâncias Macromoleculares/metabolismo , Proteínas Nucleares/metabolismo , Multimerização Proteica , Proteínas Repressoras/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Domínios Proteicos , Ubiquitinação , Proteína Gli3 com Dedos de Zinco
4.
Development ; 144(19): 3612-3624, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28827391

RESUMO

During development, extracellular cues guiding cell fate determination are provided by morphogens. One mechanism by which morphogens are proposed to traverse extracellular space is by traveling along specialized filopodia called cytonemes. These cellular highways extend between signal-producing and -receiving cells to enable direct morphogen delivery. Although genetic studies support cytoneme involvement in morphogen transport, mechanistic insight into how they are regulated is limited owing to technical challenges associated with performing cell biological analysis of the delicate filopodial structures. Here, we introduce a fixation method whereby cultured cell cytonemes can be preserved for imaging studies, allowing investigation of cytoneme regulation using standard cell biological techniques. Using this method, we examined Hedgehog-containing cytonemes and identified a role for the Hedgehog deployment protein Dispatched in cytoneme stabilization. We demonstrate that Hedgehog and Dispatched colocalize in cytonemes, and that cholesterol-modified Hedgehog acts through Dispatched to increase cytoneme occurrence. Live imaging suggests that this occurs through Dispatched-mediated slowing of cytoneme retraction rates. Dispatched-induced cytoneme modulation was recapitulated in wing imaginal discs of transgenic Drosophila, providing evidence that cultured cell cytoneme analysis is predictive of in vivo functionality.


Assuntos
Proteínas de Drosophila/metabolismo , Pseudópodes/metabolismo , Fixação de Tecidos/métodos , Animais , Transporte Biológico , Células Cultivadas , Colesterol/metabolismo , Drosophila melanogaster/metabolismo , Camundongos , Células NIH 3T3 , Reprodutibilidade dos Testes
5.
PLoS Genet ; 11(8): e1005473, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26291458

RESUMO

The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice.


Assuntos
Proteínas de Drosophila/metabolismo , Processamento de Proteína Pós-Traducional , Receptores Acoplados a Proteínas G/metabolismo , Sequência de Aminoácidos , Animais , Sequência Conservada , Drosophila melanogaster , Glicosilação , Células HEK293 , Humanos , Camundongos , Dados de Sequência Molecular , Células NIH 3T3 , Ligação Proteica , Transporte Proteico , Transdução de Sinais , Receptor Smoothened , Especificidade da Espécie
7.
Dev Biol ; 409(1): 84-94, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26481064

RESUMO

During development, the evolutionarily conserved Hedgehog (Hh) morphogen provides instructional cues that influence cell fate, cell affinity and tissue morphogenesis. To do so, the Hh signaling cascade must coordinate its activity with other morphogenetic signals. This can occur through engagement of or response to effectors that do not typically function as core Hh pathway components. Given the ability of small G proteins of the Ras family to impact cell survival, differentiation, growth and adhesion, we wanted to determine whether Hh and Ras signaling might intersect during development. We performed genetic modifier tests in Drosophila to examine the ability of select Ras family members to influence Hh signal output, and identified Rap1 as a positive modulator of Hh pathway activity. Our results suggest that Rap1 is activated to its GTP-bound form in response to Hh ligand, and that the GTPase exchange factor C3G likely contributes to this activation. The Rap1 effector Canoe (Cno) also impacts Hh signal output, suggesting that a C3G-Rap1-Cno axis intersects the Hh pathway during tissue morphogenesis.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Proteínas de Ligação a Telômeros/metabolismo , Animais , Genes Supressores , Guanosina Trifosfato/metabolismo , Complexo Shelterina
8.
Development ; 139(3): 612-21, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22223683

RESUMO

The Hedgehog (Hh) signaling pathway plays an instructional role during development, and is frequently activated in cancer. Ligand-induced pathway activation requires signaling by the transmembrane protein Smoothened (Smo), a member of the G-protein-coupled receptor (GPCR) superfamily. The extracellular (EC) loops of canonical GPCRs harbor cysteine residues that engage in disulfide bonds, affecting active and inactive signaling states through regulating receptor conformation, dimerization and/or ligand binding. Although a functional importance for cysteines localized to the N-terminal extracellular cysteine-rich domain has been described, a functional role for a set of conserved cysteines in the EC loops of Smo has not yet been established. In this study, we mutated each of the conserved EC cysteines, and tested for effects on Hh signal transduction. Cysteine mutagenesis reveals that previously uncharacterized functional roles exist for Smo EC1 and EC2. We provide in vitro and in vivo evidence that EC1 cysteine mutation induces significant Hh-independent Smo signaling, triggering a level of pathway activation similar to that of a maximal Hh response in Drosophila and mammalian systems. Furthermore, we show that a single amino acid change in EC2 attenuates Hh-induced Smo signaling, whereas deletion of the central region of EC2 renders Smo fully active, suggesting that the conformation of EC2 is crucial for regulated Smo activity. Taken together, these findings are consistent with loop cysteines engaging in disulfide bonds that facilitate a Smo conformation that is silent in the absence of Hh, but can transition to a fully active state in response to ligand.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sequência de Aminoácidos , Animais , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Masculino , Dados de Sequência Molecular , Mutagênese , Conformação Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Receptor Smoothened , Asas de Animais/metabolismo
9.
Nature ; 456(7224): 967-70, 2008 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-18987629

RESUMO

The hedgehog (Hh) signalling pathway has an evolutionarily conserved role in patterning fields of cells during metazoan development, and is inappropriately activated in cancer. Hh pathway activity is absolutely dependent on signalling by the seven-transmembrane protein smoothened (Smo), which is regulated by the Hh receptor patched (Ptc). Smo signals to an intracellular multi-protein complex containing the Kinesin related protein Costal2 (Cos2), the protein kinase Fused (Fu) and the transcription factor Cubitus interruptus (Ci). In the absence of Hh, this complex regulates the cleavage of full-length Ci to a truncated repressor protein, Ci75, in a process that is dependent on the proteasome and priming phosphorylations by Protein kinase A (PKA). Binding of Hh to Ptc blocks Ptc-mediated Smo inhibition, allowing Smo to signal to the intracellular components to attenuate Ci cleavage. Because of its homology with the Frizzled family of G-protein-coupled receptors (GPCR), a likely candidate for an immediate Smo effector would be a heterotrimeric G protein. However, the role that G proteins may have in Hh signal transduction is unclear and quite controversial, which has led to widespread speculation that Smo signals through a variety of novel G-protein-independent mechanisms. Here we present in vitro and in vivo evidence in Drosophila that Smo activates a G protein to modulate intracellular cyclic AMP levels in response to Hh. Our results demonstrate that Smo functions as a canonical GPCR, which signals through Galphai to regulate Hh pathway activation.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Coristoma/metabolismo , AMP Cíclico/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Proteínas Hedgehog/genética , Cinesinas/metabolismo , Mutação/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptor Smoothened
10.
J Cell Biol ; 223(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38856684

RESUMO

Sonic Hedgehog (SHH) is a driver of embryonic patterning that, when corrupted, triggers developmental disorders and cancers. SHH effector responses are organized through primary cilia (PC) that grow and retract with the cell cycle and in response to extracellular cues. Disruption of PC homeostasis corrupts SHH regulation, placing significant pressure on the pathway to maintain ciliary fitness. Mechanisms by which ciliary robustness is ensured in SHH-stimulated cells are not yet known. Herein, we reveal a crosstalk circuit induced by SHH activation of Phospholipase A2α that drives ciliary E-type prostanoid receptor 4 (EP4) signaling to ensure PC function and stabilize ciliary length. We demonstrate that blockade of SHH-EP4 crosstalk destabilizes PC cyclic AMP (cAMP) equilibrium, slows ciliary transport, reduces ciliary length, and attenuates SHH pathway induction. Accordingly, Ep4-/- mice display shortened neuroepithelial PC and altered SHH-dependent neuronal cell fate specification. Thus, SHH initiates coordination between distinct ciliary receptors to maintain PC function and length homeostasis for robust downstream signaling.


Assuntos
Cílios , Proteínas Hedgehog , Prostaglandinas , Transdução de Sinais , Animais , Camundongos , Cílios/metabolismo , AMP Cíclico/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Camundongos Knockout , Prostaglandinas/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Receptores de Prostaglandina E Subtipo EP4/genética
11.
Methods Mol Biol ; 2374: 95-106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34562246

RESUMO

The 12-pass transmembrane protein Dispatched (DISP) is essential for Sonic Hedgehog (SHH) release from ligand-producing cells and is indispensable for establishment of the SHH morphogen gradient during tissue patterning. Regulatory events controlling DISP release of SHH are not yet fully characterized. We recently demonstrated that DISP is cleaved by FURIN proprotein convertase at a conserved site in its first extracellular loop. Mutation of the cleavage site attenuates DISP-mediated SHH release, which indicates that Furin cleavage is a positive step toward DISP protein maturation. In this chapter, we present a ligand release/retention protocol that allows for the analysis of DISP cleavage, DISP-mediated release of SHH ligand from producing cells, and secretion-dependent signal induction in target cells.


Assuntos
Transdução de Sinais , Furina/genética , Proteínas Hedgehog/genética , Ligantes , Transativadores/metabolismo
12.
J Vis Exp ; (184)2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35786607

RESUMO

Developmental tissue patterning and postdevelopmental tissue homeostasis depend upon controlled delivery of cellular signals called morphogens. Morphogens act in a concentration- and time-dependent manner to specify distinct transcriptional programs that instruct and reinforce cell fate. One mechanism by which appropriate morphogen signaling thresholds are ensured is through delivery of the signaling proteins by specialized filopodia called cytonemes. Cytonemes are very thin (≤200 nm in diameter) and can grow to lengths of several hundred microns, which makes their preservation for fixed-image analysis challenging. This paper describes a refined method for delicate handling of mouse embryos for fixation, immunostaining, and thick sectioning to allow for visualization of cytonemes using standard confocal microscopy. This protocol has been successfully used to visualize cytonemes that connect distinct cellular signaling compartments during mouse neural tube development. The technique can also be adapted to detect cytonemes across tissue types to facilitate the interrogation of developmental signaling at unprecedented resolution.


Assuntos
Pseudópodes , Transdução de Sinais , Animais , Desenvolvimento Embrionário , Camundongos , Pseudópodes/metabolismo
13.
Curr Biol ; 18(16): 1215-20, 2008 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-18691888

RESUMO

The Hedgehog (Hh) signaling pathway initiates an evolutionarily conserved developmental program required for the proper patterning of many tissues [1]. Although Costal2 (Cos2) is a requisite component of the Hh pathway, its mechanistic role is not well understood. Because of its primary sequence, Cos2 was initially predicted to function as a kinesin-like protein [2]. However, evidence showing that Cos2 function might require kinesin-like properties has been lacking [2-6]. Thus, the prevailing dogma in the field is that Cos2 functions solely as a scaffolding protein [7, 8]. Here, we show that Cos2 motility is required for its biological function and that this motility may be Hh regulated. We show that Cos2 motility requires an active motor domain, ATP, and microtubules. Additionally, Cos2 recruits and transports other components of the Hh signaling pathway, including the transcription factor Cubitus interruptus (Ci). Drosophila expressing cos2 mutations that encode proteins that lack motility are attenuated in their ability to regulate Ci activity and exhibit phenotypes consistent with attenuated Cos2 function [9]. Combined, these results demonstrate that Cos2 motility plays an important role in its function, regulating the amounts and activity of Ci that ultimately interpret the level of Hh to which cells are exposed.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Hedgehog/metabolismo , Cinesinas/metabolismo , Proteínas Motores Moleculares/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Drosophila
14.
Front Cell Dev Biol ; 9: 710295, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395437

RESUMO

The speckle-type POZ protein (SPOP) functions as a guardian of genome integrity and controls transcriptional regulation by functioning as a substrate adaptor for CUL3/RING-type E3 ubiquitin ligase complexes. SPOP-containing CUL3 complexes target a myriad of DNA-binding proteins involved in DNA repair and gene expression, and as such, are essential modulators of cellular homeostasis. GLI transcription factors are effectors of the Hedgehog (HH) pathway, a key driver of tissue morphogenesis and post-developmental homeostasis that is commonly corrupted in cancer. CUL3-SPOP activity regulates amplitude and duration of HH transcriptional responses by controlling stability of GLI family members. SPOP and GLI co-enrich in phase separated nuclear droplets that are thought to serve as hot spots for CUL3-mediated GLI ubiquitination and degradation. A similar framework exists in Drosophila, in which the Hedgehog-induced MATH (meprin and traf homology) and BTB (bric à brac, tramtrack, broad complex) domain containing protein (HIB) targets the GLI ortholog Cubitus interruptus (Ci) for Cul3-directed proteolysis. Despite this functional conservation, the molecular mechanisms by which HIB and SPOP contribute to Drosophila and vertebrate HH signaling differ. In this mini-review we highlight similarities between the two systems and discuss evolutionary divergence in GLI/Ci targeting that informs our understanding of how the GLI transcriptional code is controlled by SPOP and CUL3 in health and disease.

15.
Elife ; 102021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33570491

RESUMO

Morphogens function in concentration-dependent manners to instruct cell fate during tissue patterning. The cytoneme morphogen transport model posits that specialized filopodia extend between morphogen-sending and responding cells to ensure that appropriate signaling thresholds are achieved. How morphogens are transported along and deployed from cytonemes, how quickly a cytoneme-delivered, receptor-dependent signal is initiated, and whether these processes are conserved across phyla are not known. Herein, we reveal that the actin motor Myosin 10 promotes vesicular transport of Sonic Hedgehog (SHH) morphogen in mouse cell cytonemes, and that SHH morphogen gradient organization is altered in neural tubes of Myo10-/- mice. We demonstrate that cytoneme-mediated deposition of SHH onto receiving cells induces a rapid, receptor-dependent signal response that occurs within seconds of ligand delivery. This activity is dependent upon a novel Dispatched (DISP)-BOC/CDON co-receptor complex that functions in ligand-producing cells to promote cytoneme occurrence and facilitate ligand delivery for signal activation.


During development, cells must work together and talk to each other to build the organs and tissues of the growing embryo. To communicate precisely with long-distance targets, cells can project a series of thin finger-like structures known as cytonemes. Cells use these miniature highways to exchange cargo and signals, such as the protein sonic hedgehog (SHH for short). Alterations to the way SHH is exchanged during development predispose to cancer and lead to disorders of the nervous system. Yet, the mechanisms by which cytonemes work in mammals remain to be fully elucidated. In particular, it is still unclear how the structures start to form, and how the proteins are loaded and transported from one end to another. A 'molecular motor' called myosin 10, which can carry cargo along the internal skeleton of cells, may be involved in these processes. To find out, Hall et al. used fluorescent probes to track both myosin 10 and SHH in mouse cells, showing that myosin 10 carries SHH from the core of the signal-producing cell to the tips of cytonemes. There, the protein is passed to the target cell upon contact, triggering a quick response. SHH also appeared to be more than just passive cargo, interacting with another group of proteins in the signal-emitting cell before reaching its target. This mechanism then encourages the signalling cells to produce more cytonemes towards their neighbours. SHH is crucial during development, but also after birth: in fact, changes to SHH transport in adulthood can also disrupt tissue balance and hinder healing. Understanding how healthy tissues send this signal may reveal why and how disease emerges.


Assuntos
Moléculas de Adesão Celular/genética , Proteínas Hedgehog/genética , Imunoglobulina G/genética , Proteínas de Membrana/genética , Miosinas/genética , Receptores de Superfície Celular/genética , Animais , Transporte Biológico , Moléculas de Adesão Celular/metabolismo , Proteínas Hedgehog/metabolismo , Imunoglobulina G/metabolismo , Ligantes , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Miosinas/metabolismo , Receptores de Superfície Celular/metabolismo
16.
J Biol Chem ; 284(42): 28874-84, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19717563

RESUMO

The secreted protein Hedgehog (Hh) plays a critical instructional role during metazoan development. In Drosophila, Hh signaling is interpreted by a set of conserved, downstream effectors that differentially localize and interact to regulate the stability and activity of the transcription factor Cubitus interruptus. Two essential models that integrate genetic, cell biological, and biochemical information have been proposed to explain how these signaling components relate to one another within the cellular context. As the molar ratios of the signaling effectors required in each of these models are quite different, quantitating the cellular ratio of pathway components could distinguish these two models. Here, we address this important question using a set of purified protein standards to perform a quantitative analysis of Drosophila cell lysates for each downstream pathway component. We determine each component's steady-state concentration within a given cell, demonstrate the molar ratio of Hh signaling effectors differs more than two orders of magnitude and that this ratio is conserved in vivo. We find that the G-protein-coupled transmembrane protein Smoothened, an activating component, is present in limiting amounts, while a negative pathway regulator, Suppressor of Fused, is present in vast molar excess. Interestingly, despite large differences in the steady-state ratio, all downstream signaling components exist in an equimolar membrane-associated complex. We use these quantitative results to re-evaluate the current models of Hh signaling and now propose a novel model of signaling that accounts for the stoichiometric differences observed between various Hh pathway components.


Assuntos
Proteínas Hedgehog/metabolismo , Animais , Citosol/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Insetos , Cinesinas/metabolismo , Modelos Biológicos , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes/química , Proteínas Repressoras/metabolismo , Transdução de Sinais , Frações Subcelulares/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
17.
Genetics ; 178(3): 1399-413, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18245841

RESUMO

Signaling by Hedgehog (Hh) proteins shapes most tissues and organs in both vertebrates and invertebrates, and its misregulation has been implicated in many human diseases. Although components of the signaling pathway have been identified, key aspects of the signaling mechanism and downstream targets remain to be elucidated. We performed an enhancer/suppressor screen in Drosophila to identify novel components of the pathway and identified 26 autosomal regions that modify a phenotypic readout of Hh signaling. Three of the regions include genes that contribute constituents to the pathway-patched, engrailed, and hh. One of the other regions includes the gene microtubule star (mts) that encodes a subunit of protein phosphatase 2A. We show that mts is necessary for full activation of Hh signaling. A second region includes the gene second mitotic wave missing (swm). swm is recessive lethal and is predicted to encode an evolutionarily conserved protein with RNA binding and Zn(+) finger domains. Characterization of newly isolated alleles indicates that swm is a negative regulator of Hh signaling and is essential for cell polarity.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Hedgehog/metabolismo , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Alelos , Sequência de Aminoácidos , Animais , Polaridade Celular , Tamanho Celular , Cromossomos/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Embrião não Mamífero/metabolismo , Genes de Insetos , Genes Supressores , Larva/metabolismo , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Transporte Proteico , Interferência de RNA , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptor Smoothened , Asas de Animais/anatomia & histologia
18.
Trends Cell Biol ; 29(5): 385-395, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30852081

RESUMO

The Hedgehog (Hh) family of morphogens direct cell fate decisions during embryogenesis and signal to maintain tissue homeostasis after birth. Hh ligands harbor dual lipid modifications that anchor the proteins into producing cell membranes, effectively preventing ligand release. The transporter-like protein Dispatched (Disp) functions to release these membrane tethers and mobilize Hh ligands to travel toward distant cellular targets. The molecular mechanisms by which Disp achieves Hh deployment are not yet fully understood, but a number of recent publications provide insight into the complex process of Hh release. Herein we review this literature, integrate key discoveries, and discuss some of the open questions that will drive future studies aimed at understanding Disp-mediated Hh ligand deployment.


Assuntos
Proteínas Hedgehog/metabolismo , Animais , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas Hedgehog/química , Humanos , Ligantes
19.
Mol Cell Biol ; 25(3): 1200-12, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15657445

RESUMO

We purified the oncoprotein SnoN and found that it functions as a corepressor of the tumor suppressor p53 in the regulation of the hepatic alpha-fetoprotein (AFP) tumor marker gene. p53 promotes SnoN and histone deacetylase interaction at an overlapping Smad binding, p53 regulatory element (SBE/p53RE) in AFP. Comparison of wild-type and p53-null mouse liver tissue by using chromatin immunoprecipitation (ChIP) reveals that the absence of p53 protein correlates with the disappearance of SnoN at the SBE/p53RE and loss of AFP developmental repression. Treatment of AFP-expressing hepatoma cells with transforming growth factor-beta1 (TGF-beta1) induced SnoN transcription and Smad2 activation, concomitant with AFP repression. ChIP assays show that TGF-beta1 stimulates p53, Smad4, P-Smad2 binding, and histone H3K9 deacetylation and methylation, at the SBE/p53RE. Depletion, by small interfering RNA, of SnoN and/or p53 in hepatoma cells disrupted repression of AFP transcription. These findings support a model of cooperativity between p53 and TGF-beta effectors in chromatin modification and transcription repression of an oncodevelopmental tumor marker gene.


Assuntos
Cromatina/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteína Supressora de Tumor p53/metabolismo , alfa-Fetoproteínas/metabolismo , Acetilação , Animais , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Fígado , Metilação , Camundongos , Camundongos Knockout , Proteína Smad2 , Transativadores/metabolismo , Transcrição Gênica , Fator de Crescimento Transformador beta1 , Células Tumorais Cultivadas , alfa-Fetoproteínas/genética
20.
Bio Protoc ; 8(13)2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-30906805

RESUMO

Immunocytochemistry of cultured cells is a common and effective technique for determining compositions and localizations of proteins within cellular structures. However, traditional cultured cell fixation and staining protocols are not effective in preserving cultured cell cytonemes, long specialized filopodia that are dedicated to morphogen transport. As a result, limited mechanistic interrogation has been performed to assess their regulation. We developed a fixation protocol for cultured cells that preserves cytonemes, which allows for immunofluorescent analysis of endogenous and over-expressed proteins localizing to the delicate cellular structures.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa