Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 327(1): E81-E88, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38809511

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is a universal coenzyme regulating cellular energy metabolism in many cell types. Recent studies have demonstrated the close relationships between defective NAD+ metabolism and aging and age-associated metabolic diseases. The major purpose of the present study was to test the hypothesis that NAD+ biosynthesis, mediated by a rate-limiting NAD+ biosynthetic enzyme, nicotinamide phosphoribosyltransferase (NAMPT), is essential for maintaining normal adipose tissue function and whole body metabolic health during the aging process. To this end, we provided in-depth and comprehensive metabolic assessments for female adipocyte-specific Nampt knockout (ANKO) mice during aging. We first evaluated body fat mass in young (≤4-mo-old), middle aged (10-14-mo-old), and old (≥18-mo-old) mice. Intriguingly, adipocyte-specific Nampt deletion protected against age-induced obesity without changing energy balance. However, data obtained from the hyperinsulinemic-euglycemic clamp procedure (HECP) demonstrated that, despite the lean phenotype, old ANKO mice had severe insulin resistance in skeletal muscle, heart, and white adipose tissue (WAT). Old ANKO mice also exhibited hyperinsulinemia and hypoadiponectinemia. Mechanistically, loss of Nampt caused marked decreases in WAT gene expression of lipogenic targets of peroxisome proliferator-activated receptor gamma (PPAR-γ) in an age-dependent manner. In addition, administration of a PPAR-γ agonist rosiglitazone restored fat mass and improved metabolic abnormalities in old ANKO mice. In conclusion, these findings highlight the importance of the NAMPT-NAD+-PPAR-γ axis in maintaining functional integrity and quantity of adipose tissue, and whole body metabolic function in female mice during aging.NEW & NOTEWORTHY Defective NAD+ metabolism is associated with aging and age-associated metabolic diseases. In the present study, we provided in-depth metabolic assessments in female mice with adipocyte-specific inactivation of a key NAD+ biosynthetic enzyme NAMPT and revealed an unexpected role of adipose tissue NAMPT-NAD+-PPAR-γ axis in maintaining functional integrity and quantity of adipose tissue and whole body metabolic health during the aging process.


Assuntos
Adipócitos , Envelhecimento , NAD , Nicotinamida Fosforribosiltransferase , Animais , Feminino , Camundongos , Adipócitos/metabolismo , Envelhecimento/metabolismo , Citocinas/metabolismo , Metabolismo Energético/genética , Resistência à Insulina/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Obesidade/metabolismo , Obesidade/genética , Fenótipo , PPAR gama/metabolismo , PPAR gama/genética
2.
Inflamm Regen ; 44(1): 27, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831448

RESUMO

BACKGROUND: Regeneration of injured tissue is dependent on stem/progenitor cells, which can undergo proliferation and maturation processes to replace the lost cells and extracellular matrix (ECM). Bone has a higher regenerative capacity than other tissues, with abundant mesenchymal progenitor cells in the bone marrow, periosteum, and surrounding muscle. However, the treatment of bone fractures is not always successful; a marked number of clinical case reports have described nonunion or delayed healing for various reasons. Supplementation of exogenous stem cells by stem cell therapy is anticipated to improve treatment outcomes; however, there are several drawbacks including the need for special devices for the expansion of stem cells outside the body, low rate of cell viability in the body after transplantation, and oncological complications. The use of endogenous stem/progenitor cells, instead of exogenous cells, would be a possible solution, but it is unclear how these cells migrate towards the injury site. METHODS: The chemoattractant capacity of the elastin microfibril interface located protein 2 (Emilin2), generated by macrophages, was identified by the migration assay and LC-MS/MS. The functions of Emilin2 in bone regeneration were further studied using Emilin2-/- mice. RESULTS: The results show that in response to bone injury, there was an increase in Emilin2, an ECM protein. Produced by macrophages, Emilin2 exhibited chemoattractant properties towards mesenchymal cells. Emilin2-/- mice underwent delayed bone regeneration, with a decrease in mesenchymal cells after injury. Local administration of recombinant Emilin2 protein enhanced bone regeneration. CONCLUSION: Emilin2 plays a crucial role in bone regeneration by increasing mesenchymal cells. Therefore, Emilin2 can be used for the treatment of bone fracture by recruiting endogenous progenitor cells.

3.
Aging Cell ; : e14206, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769821

RESUMO

Aging progresses through the interaction of metabolic processes, including changes in the immune and endocrine systems. Glucocorticoids (GCs), which are regulated by the hypothalamic-pituitary-adrenal (HPA) axis, play an important role in regulating metabolism and immune responses. However, the age-related changes in the secretion mechanisms of GCs remain elusive. Here, we found that corticosterone (CORT) secretion follows a circadian rhythm in young mice, whereas it oversecreted throughout the day in aged mice >18 months old, resulting in the disappearance of diurnal variation. Furthermore, senescent cells progressively accumulated in the zF of the adrenal gland as mice aged beyond 18 months. This accumulation was accompanied by an increase in the number of Ad4BP/SF1 (SF1), a key transcription factor, strongly expressing cells (SF1-high positive: HP). Removal of senescent cells with senolytics, dasatinib, and quercetin resulted in the reduction of the number of SF1-HP cells and recovery of CORT diurnal oscillation in 24-month-old mice. Similarly, administration of a neutralizing antibody against IL1ß, which was found to be strongly expressed in the adrenocortical cells of the zF, resulted in a marked decrease in SF1-HP cells and restoration of the CORT circadian rhythm. Our findings suggest that the disappearance of CORT diurnal oscillation is a characteristic of aging individuals and is caused by the secretion of IL1ß, one of the SASPs, from senescent cells that accumulate in the zF of the adrenal cortex. These findings provide a novel insight into aging. Age-related hypersecretory GCs could be a potential therapeutic target for aging-related diseases.

4.
Exp Anim ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39111851

RESUMO

Laboratory rats, like mice, are a type of animal commonly used in scientific investigations as well as in basic aging and geriatric research. The selection of a rat strain is an important first step in the planning and design of an experiment due to physiological, anatomical, and ethological variations in each strain, which may significantly modify the expected results. In the present study, we characterized age-related changes, from 3 months old (mo) to 24 mo, in three male rat strains commonly used in medical research: RccHan®ï¸:WIST (RccHan:WIST), F344/NSlc (F344), and Slc:SD Rat (SD). The body weight, water/food consumption, and survival rate of each strain were physiologically evaluated. Hematological and biochemical values were analyzed every three months. Hematological results showed a decrease in lymphocytes and increases in other leukocytes from 12 mo in F344 and SD rats. The incidence of hematological disorder was 10-15% in F344 and SD rats from 18 mo. Increases in hepatic biochemical parameters (alanine transaminase (GPT/ALT) and aspartate transaminase (GOT/AST)) and cytopathological parameters (creatine phosphokinase (CPK)) were observed in male F344 rats at 12 mo. Triglycerides (TG) serum levels were significantly elevated in the 12 mo RccHan:WIST rats, while Lipase (LIP) levels were significantly reduced in 24 mo. The present results revealed significant variations in hematological and biochemical values in the different laboratory male rat strains due to genetic and nutritional-metabolic factors specific to each strain.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa