Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Hum Mol Genet ; 32(3): 496-505, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36048866

RESUMO

Prolyl hydroxylase (PHD) inhibitors are in clinical development for anaemia in chronic kidney disease. Epidemiological studies have reported conflicting results regarding safety of long-term therapeutic haemoglobin (Hgb) rises through PHD inhibition on risk of cardiovascular disease. Genetic variation in genes encoding PHDs can be used as partial proxies to investigate the potential effects of long-term Hgb rises. We used Mendelian randomization to investigate the effect of long-term Hgb level rises through genetically proxied PHD inhibition on coronary artery disease (CAD: 60 801 cases; 123 504 controls), myocardial infarction (MI: 42 561 cases; 123 504 controls) or stroke (40 585 cases; 406 111 controls). To further characterize long-term effects of Hgb level rises, we performed a phenome-wide association study (PheWAS) in up to 451 099 UK Biobank individuals. Genetically proxied therapeutic PHD inhibition, equivalent to a 1.00 g/dl increase in Hgb levels, was not associated (at P < 0.05) with increased odds of CAD; odd ratio (OR) [95% confidence intervals (CI)] = 1.06 (0.84, 1.35), MI [OR (95% CI) = 1.02 (0.79, 1.33)] or stroke [OR (95% CI) = 0.91 (0.66, 1.24)]. PheWAS revealed associations with blood related phenotypes consistent with EGLN's role, relevant kidney- and liver-related biomarkers like estimated glomerular filtration rate and microalbuminuria, and non-alcoholic fatty liver disease (Bonferroni-adjusted P < 5.42E-05) but these were not clinically meaningful. These findings suggest that long-term alterations in Hgb through PHD inhibition are unlikely to substantially increase cardiovascular disease risk; using large disease genome-wide association study data, we could exclude ORs of 1.35 for cardiovascular risk with a 1.00 g/dl increase in Hgb.


Assuntos
Doenças Cardiovasculares , Acidente Vascular Cerebral , Humanos , Doenças Cardiovasculares/genética , Estudo de Associação Genômica Ampla , Fatores de Risco , Prolil Hidroxilases/genética , Predisposição Genética para Doença , Fatores de Risco de Doenças Cardíacas , Acidente Vascular Cerebral/genética , Análise da Randomização Mendeliana
2.
Am J Hum Genet ; 109(9): 1638-1652, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36055212

RESUMO

Hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs) are currently under clinical development for treating anemia in chronic kidney disease (CKD), but it is important to monitor their cardiovascular safety. Genetic variants can be used as predictors to help inform the potential risk of adverse effects associated with drug treatments. We therefore aimed to use human genetics to help assess the risk of adverse cardiovascular events associated with therapeutically altered EPO levels to help inform clinical trials studying the safety of HIF-PHIs. By performing a genome-wide association meta-analysis of EPO (n = 6,127), we identified a cis-EPO variant (rs1617640) lying in the EPO promoter region. We validated this variant as most likely causal in controlling EPO levels by using genetic and functional approaches, including single-base gene editing. Using this variant as a partial predictor for therapeutic modulation of EPO and large genome-wide association data in Mendelian randomization tests, we found no evidence (at p < 0.05) that genetically predicted long-term rises in endogenous EPO, equivalent to a 2.2-unit increase, increased risk of coronary artery disease (CAD, OR [95% CI] = 1.01 [0.93, 1.07]), myocardial infarction (MI, OR [95% CI] = 0.99 [0.87, 1.15]), or stroke (OR [95% CI] = 0.97 [0.87, 1.07]). We could exclude increased odds of 1.15 for cardiovascular disease for a 2.2-unit EPO increase. A combination of genetic and functional studies provides a powerful approach to investigate the potential therapeutic profile of EPO-increasing therapies for treating anemia in CKD.


Assuntos
Anemia , Doença da Artéria Coronariana , Infarto do Miocárdio , Insuficiência Renal Crônica , Anemia/tratamento farmacológico , Anemia/genética , Doença da Artéria Coronariana/genética , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana , Infarto do Miocárdio/genética , Insuficiência Renal Crônica/genética
3.
J Neurochem ; 168(7): 1374-1401, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38482552

RESUMO

The mitochondrial translocator protein 18 kDa (TSPO) has been linked to functions from steroidogenesis to regulation of cellular metabolism and is an attractive therapeutic target for chronic CNS inflammation. Studies in Leydig cells and microglia indicate that TSPO function may vary between cells depending on their specialized roles. Astrocytes are critical for providing trophic and metabolic support in the brain. Recent work has highlighted that TSPO expression increases in astrocytes under inflamed conditions and may drive astrocyte reactivity. Relatively little is known about the role TSPO plays in regulating astrocyte metabolism and whether this protein is involved in immunometabolic processes in these cells. Using TSPO-deficient (TSPO-/-) mouse primary astrocytes in vitro (MPAs) and a human astrocytoma cell line (U373 cells), we performed extracellular metabolic flux analyses. We found that TSPO deficiency reduced basal cellular respiration and attenuated the bioenergetic response to glucopenia. Fatty acid oxidation was increased, and lactate production was reduced in TSPO-/- MPAs and U373 cells. Co-immunoprecipitation studies revealed that TSPO forms a complex with carnitine palmitoyltransferase 1a in U373 and MPAs, presenting a mechanism wherein TSPO may regulate FAO in these cells. Compared to TSPO+/+ cells, in TSPO-/- MPAs we observed attenuated tumor necrosis factor release following 3 h lipopolysaccharide (LPS) stimulation, which was enhanced at 24 h post-LPS stimulation. Together these data suggest that while TSPO acts as a regulator of metabolic flexibility, TSPO deficiency does not appear to modulate the metabolic response of MPAs to inflammation, at least in response to the model used in this study.


Assuntos
Astrócitos , Camundongos Knockout , Receptores de GABA , Astrócitos/metabolismo , Animais , Receptores de GABA/metabolismo , Camundongos , Humanos , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Células Cultivadas , Metabolismo Energético/fisiologia
4.
Am J Med Genet B Neuropsychiatr Genet ; 189(5): 151-162, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35719055

RESUMO

Genome-wide association studies (GWAS) have identified multiple genomic regions associated with schizophrenia, although many variants reside in noncoding regions characterized by high linkage disequilibrium (LD) making the elucidation of molecular mechanisms challenging. A genomic region on chromosome 10q24 has been consistently associated with schizophrenia with risk attributed to the AS3MT gene. Although AS3MT is hypothesized to play a role in neuronal development and differentiation, work to fully understand the function of this gene has been limited. In this study we explored the function of AS3MT using a neuronal cell line (SH-SY5Y). We confirm previous findings of isoform specific expression of AS3MT during SH-SY5Y differentiation toward neuronal fates. Using CRISPR-Cas9 gene editing we generated AS3MT knockout SH-SY5Y cell lines and used RNA-seq to identify significant changes in gene expression in pathways associated with neuronal development, inflammation, extracellular matrix formation, and RNA processing, including dysregulation of other genes strongly implicated in schizophrenia. We did not observe any morphological changes in cell size and neurite length following neuronal differentiation and MAP2 immunocytochemistry. These results provide novel insights into the potential role of AS3MT in brain development and identify pathways through which genetic variation in this region may confer risk for schizophrenia.


Assuntos
Neuroblastoma , Esquizofrenia , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação/genética , Metiltransferases/genética , Neurogênese/genética , Esquizofrenia/genética
5.
Mol Cell Neurosci ; 81: 72-83, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28064060

RESUMO

Contactins (Cntns) are a six-member subgroup of the immunoglobulin cell adhesion molecule superfamily (IgCAMs) with pronounced brain expression and function. Recent genetic studies of neuropsychiatric disorders have pinpointed contactin-4 (CNTN4), contactin-5 (CNTN5) and contactin-6 (CNTN6) as candidate genes in neurodevelopmental disorders, particularly in autism spectrum disorders (ASDs), but also in intellectual disability, schizophrenia (SCZ), attention-deficit hyperactivity disorder (ADHD), bipolar disorder (BD), alcohol use disorder (AUD) and anorexia nervosa (AN). This suggests that they have important functions during neurodevelopment. This suggestion is supported by data showing that neurite outgrowth, cell survival and neural circuit formation can be affected by disruption of these genes. Here, we review the current genetic data about their involvement in neuropsychiatric disorders and explore studies on how null mutations affect mouse behavior. Finally, we highlight to role of protein-protein interactions in the potential mechanism of action of Cntn4, -5 and -6 and emphasize that complexes with other membrane proteins may play a role in neuronal developmental functions.


Assuntos
Contactinas/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo , Animais , Contactinas/química , Contactinas/genética , Humanos , Mutação com Perda de Função , Transtornos do Neurodesenvolvimento/genética
6.
Neurosci Lett ; 830: 137778, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621504

RESUMO

The endoplasmic reticulum (ER) plays an indispensable role in cellular processes, including maintenance of calcium homeostasis, and protein folding, synthesized and processing. Disruptions in these processes leading to ER stress and the accumulation of misfolded proteins can instigate the unfolded protein response (UPR), culminating in either restoration of balanced proteostasis or apoptosis. A key player in this intricate balance is CLCC1, an ER-resident chloride channel, whose essential role extends to retinal development, regulation of ER stress, and UPR. The importance of CLCC1 is further underscored by its interaction with proteins localized to mitochondria-associated endoplasmic reticulum membranes (MAMs), where it participates in UPR induction by MAM proteins. In previous research, we identified a p.(Asp25Glu) pathogenic CLCC1 variant associated with retinitis pigmentosa (RP) (CLCC1 hg38 NC_000001.11; NM_001048210.3, c.75C > A; UniprotKB Q96S66). In attempt to decipher the impact of this variant function, we leveraged liquid chromatography-mass spectrometry (LC-MS) to identify likely CLCC1-interacting proteins. We discovered that the CLCC1 interactome is substantially composed of proteins that localize to ER compartments and that the Asp25Glu variant results in noticeable loss and gain of specific protein interactors. Intriguingly, the analysis suggests that the CLCC1Asp25Glu mutant protein exhibits a propensity for increased interactions with cytoplasmic proteins compared to its wild-type counterpart. To corroborate our LC-MS data, we further scrutinized two novel CLCC1 interactors, Calnexin and SigmaR1, chaperone proteins that localize to the ER and MAMs. Through microscopy, we demonstrate that CLCC1 co-localizes with both proteins, thereby validating our initial findings. Moreover, our results reveal that CLCC1 co-localizes with SigmaR1 not merely at the ER, but also at MAMs. These findings reinforce the notion of CLCC1 interacting with MAM proteins at the ER-mitochondria interface, setting the stage for further exploration into how these interactions impact ER or mitochondria function and lead to retinal degenerative disease when impaired.


Assuntos
Retículo Endoplasmático , Receptores sigma , Receptor Sigma-1 , Humanos , Retículo Endoplasmático/metabolismo , Células HEK293 , Mitocôndrias/metabolismo , Mitocôndrias/genética , Membranas Mitocondriais/metabolismo , Receptores sigma/metabolismo , Receptores sigma/genética , Retinose Pigmentar/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Resposta a Proteínas não Dobradas
7.
Open Biol ; 14(5): 240018, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38745463

RESUMO

The neuronal cell adhesion molecule contactin-4 (CNTN4) is genetically associated with autism spectrum disorder (ASD) and other psychiatric disorders. Cntn4-deficient mouse models have previously shown that CNTN4 plays important roles in axon guidance and synaptic plasticity in the hippocampus. However, the pathogenesis and functional role of CNTN4 in the cortex has not yet been investigated. Our study found a reduction in cortical thickness in the motor cortex of Cntn4 -/- mice, but cortical cell migration and differentiation were unaffected. Significant morphological changes were observed in neurons in the M1 region of the motor cortex, indicating that CNTN4 is also involved in the morphology and spine density of neurons in the motor cortex. Furthermore, mass spectrometry analysis identified an interaction partner for CNTN4, confirming an interaction between CNTN4 and amyloid-precursor protein (APP). Knockout human cells for CNTN4 and/or APP revealed a relationship between CNTN4 and APP. This study demonstrates that CNTN4 contributes to cortical development and that binding and interplay with APP controls neural elongation. This is an important finding for understanding the physiological function of APP, a key protein for Alzheimer's disease. The binding between CNTN4 and APP, which is involved in neurodevelopment, is essential for healthy nerve outgrowth.


Assuntos
Precursor de Proteína beta-Amiloide , Contactinas , Neurônios , Animais , Humanos , Camundongos , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Movimento Celular , Contactinas/metabolismo , Contactinas/genética , Camundongos Knockout , Córtex Motor/metabolismo , Neurônios/metabolismo , Ligação Proteica
8.
bioRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37873215

RESUMO

The mitochondrial translocator protein 18kDa (TSPO) has been linked to a variety of functions from steroidogenesis to regulation of cellular metabolism and is an attractive therapeutic target for chronic CNS inflammation. Studies in the periphery using Leydig cells and hepatocytes, as well as work in microglia, indicate that the function of TSPO may vary between cells depending on their specialised roles. Astrocytes are critical for providing trophic and metabolic support in the brain as part of their role in maintaining brain homeostasis. Recent work has highlighted that TSPO expression increases in astrocytes under inflamed conditions and may drive astrocyte reactivity. However, relatively little is known about the role TSPO plays in regulating astrocyte metabolism and whether this protein is involved in immunometabolic processes in these cells. Using TSPO-deficient (TSPO-/-) mouse primary astrocytes in vitro (MPAs) and a human astrocytoma cell line (U373 cells), we performed metabolic flux analyses. We found that loss of TSPO reduced basal astrocyte respiration and increased the bioenergetic response to glucose reintroduction following glucopenia, while increasing fatty acid oxidation (FAO). Lactate production was significantly reduced in TSPO-/- astrocytes. Co-immunoprecipitation studies in U373 cells revealed that TSPO forms a complex with carnitine palmitoyltransferase 1a, which presents a mechanism wherein TSPO may regulate FAO in astrocytes. Compared to TSPO+/+ cells, inflammation induced by 3h lipopolysaccharide (LPS) stimulation of TSPO-/- MPAs revealed attenuated tumour necrosis factor release, which was enhanced in TSPO-/- MPAs at 24h LPS stimulation. Together these data suggest that while TSPO acts as a regulator of metabolic flexibility in astrocytes, loss of TSPO does not appear to modulate the metabolic response of astrocytes to inflammation, at least in response to the stimulus/time course used in this study.

9.
Front Pharmacol ; 13: 943627, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339621

RESUMO

The human SH-SY5Y neuroblastoma cell line is widely used in neuroscience research as a neuronal cell model. Following differentiation to a neuron-like state, SH-SY5Y cells become more morphologically similar to neurons and form functional synapses. Previous studies have managed to differentiate SH-SY5Y cells towards cholinergic, dopaminergic and adrenergic fates. However, their application in disease modeling remains limited as other neuronal subtypes (e.g., glutamatergic, GABAergic) are also implicated in neurological disorders, and no current protocols exist to generate these subtypes of differentiated SH-SY5Y cells. Our study aimed to evaluate the use of a xeno-free version of B-27, a supplement commonly used in neuronal culture, for SH-SY5Y maintenance and differentiation. To evaluate the proliferative capacity of SH-SY5Y cells cultured in B-27, we performed growth curve analyses, immunocytochemical staining for Ki-67 and qRT-PCR to track changes in cell cycle progression. SH-SY5Y cells cultured in FBS or under serum-starved conditions were used as controls. We observed that SH-SY5Y cells show reduced growth and proliferation rates accompanied by decreased CDK6 and CDK1 expression following 4-day exposure to B-27, suggesting B-27 induces a quiescent state in SH-SY5Y cells. Importantly, this reduced growth rate was not due to increased apoptosis. As cell cycle exit is associated with differentiation, we next sought to determine the fate of SH-SY5Y cells cultured in B-27. B-27-cultured SH-SY5Y cells show changes in cell morphology, adopting pyramidal shapes and extending neurites, and upregulation of neuronal differentiation markers (GAP43, TUBB3, and SYP). B-27-cultured SH-SY5Y cells also show increased expression of glutamatergic markers (GLUL and GLS). These findings suggest that B-27 may be a non-toxic inducer of glutamatergic SH-SY5Y differentiation. Our study demonstrates a novel way of using B-27 to obtain populations of glutamatergic SH-SY5Y cells. As dysregulated glutamatergic signaling is associated with a variety of neuropsychiatric and neurodegenerative disorders, the capability to generate glutamatergic neuron-like SH-SY5Y cells creates endless disease modeling opportunities. The ease of SH-SY5Y culture allows researchers to generate large-scale cultures for high-throughput pharmacological or toxicity studies. Also compatible with the growing popularity of animal-component-free studies, this xeno-free B-27/SH-SY5Y culture system will be a valuable tool to boost the translational potential of preliminary studies requiring glutamatergic neuronal cells of human origin.

10.
Front Psychiatry ; 13: 842755, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35492721

RESUMO

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by restrictive and repetitive behaviors, alongside deficits in social interaction and communication. The etiology of ASD is largely unknown but is strongly linked to genetic variants in neuronal cell adhesion molecules (CAMs), cell-surface proteins that have important roles in neurodevelopment. A combination of environmental and genetic factors are believed to contribute to ASD pathogenesis. Inflammation in ASD has been identified as one of these factors, demonstrated through the presence of proinflammatory cytokines, maternal immune activation, and activation of glial cells in ASD brains. Glial cells are the main source of cytokines within the brain and, therefore, their activity is vital in mediating inflammation in the central nervous system. However, it is unclear whether the aforementioned neuronal CAMs are involved in modulating neuroimmune signaling or glial behavior. This review aims to address the largely unexplored role that neuronal CAMs may play in mediating inflammatory cascades that underpin neuroinflammation in ASD, primarily focusing on the Notch, nuclear factor-κB (NF-κB), and mitogen-activated protein kinase (MAPK) cascades. We will also evaluate the available evidence on how neuronal CAMs may influence glial activity associated with inflammation. This is important when considering the impact of environmental factors and inflammatory responses on ASD development. In particular, neural CAM1 (NCAM1) can regulate NF-κB transcription in neurons, directly altering proinflammatory signaling. Additionally, NCAM1 and contactin-1 appear to mediate astrocyte and oligodendrocyte precursor proliferation which can alter the neuroimmune response. Importantly, although this review highlights the limited information available, there is evidence of a neuronal CAM regulatory role in inflammatory signaling. This warrants further investigation into the role other neuronal CAM family members may have in mediating inflammatory cascades and would advance our understanding of how neuroinflammation can contribute to ASD pathology.

11.
J Vis Exp ; (190)2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36571412

RESUMO

Potassium chloride cotransporters 2 (KCC2) is a member of the solute carrier family 12 (SLC12) of cation-chloride-cotransporters (CCCs), found exclusively in the neuron and is essential for the proper functioning of Cl- homeostasis and consequently functional GABAergic inhibition. Failure in proper regulation of KCC2 is deleterious and has been associated with the prevalence of several neurological diseases, including epilepsy. There has been considerable progress with regard to understanding the mechanisms involved in the regulation of KCC2, accredited to the development of techniques that enable researchers to study its functions and activities; either via direct (assessing kinase regulatory sites phosphorylation) or indirect (observing and monitoring GABA activity) investigations. Here, the protocol highlights how to investigate KCC2 phosphorylation at kinase regulatory sites - Thr906 and Thr1007- using western blotting technique. There are other classic methods used to directly measure KCC2 activity, such as rubidium ion and thallium ion uptake assay. Further techniques such as patch-clamp-electrophysiology are used to measure GABA activity; hence, indirectly reflecting activated and/or inactivated KCC2 as informed by the assessment of intracellular chloride ion homeostasis. A few of these additional techniques will be briefly discussed in this manuscript.


Assuntos
Epilepsia , Simportadores , Humanos , Simportadores/genética , Cloretos , Neurônios/metabolismo , Western Blotting , Ácido gama-Aminobutírico
12.
Transl Psychiatry ; 11(1): 106, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542194

RESUMO

Neurodevelopmental and neuropsychiatric disorders, such as autism spectrum disorders (ASD), anorexia nervosa (AN), Alzheimer's disease (AD), and schizophrenia (SZ), are heterogeneous brain disorders with unknown etiology. Genome wide studies have revealed a wide variety of risk genes for these disorders, indicating a biological link between genetic signaling pathways and brain pathology. A unique risk gene is Contactin 4 (Cntn4), an Ig cell adhesion molecule (IgCAM) gene, which has been associated with several neuropsychiatric disorders including ASD, AN, AD, and SZ. Here, we investigated the Cntn4 gene knockout (KO) mouse model to determine whether memory dysfunction and altered brain plasticity, common neuropsychiatric symptoms, are affected by Cntn4 genetic disruption. For that purpose, we tested if Cntn4 genetic disruption affects CA1 synaptic transmission and the ability to induce LTP in hippocampal slices. Stimulation in CA1 striatum radiatum significantly decreased synaptic potentiation in slices of Cntn4 KO mice. Neuroanatomical analyses showed abnormal dendritic arborization and spines of hippocampal CA1 neurons. Short- and long-term recognition memory, spatial memory, and fear conditioning responses were also assessed. These behavioral studies showed increased contextual fear conditioning in heterozygous and homozygous KO mice, quantified by a gene-dose dependent increase in freezing response. In comparison to wild-type mice, Cntn4-deficient animals froze significantly longer and groomed more, indicative of increased stress responsiveness under these test conditions. Our electrophysiological, neuro-anatomical, and behavioral results in Cntn4 KO mice suggest that Cntn4 has important functions related to fear memory possibly in association with the neuronal morphological and synaptic plasticity changes in hippocampus CA1 neurons.


Assuntos
Hipocampo , Potenciação de Longa Duração , Animais , Medo , Memória , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal
13.
Neuroscience ; 424: 184-202, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31705890

RESUMO

Alzheimer's disease (AD) is a debilitating disease and the most common cause of dementia. As the world population ages even modest advances in therapies and preventative strategies would be of benefit. The specific physiological function of the amyloid precursor protein (APP) remains unclear despite strong genetic and biochemical evidence of APP involvement in AD. The intricate molecular processes of the nervous system rely on interactions between cell surface receptors coupled to intracellular downstream signaling networks. APP is an integral membrane protein which interacts with members of the Contactin family of proteins. Here we review recent progresses in the field and discuss the physiological importance of APP-Contactin interaction, as well as their roles and contributions in the pathophysiology of AD.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Contactinas/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/patologia , Contactinas/genética , Humanos , Ligação Proteica/fisiologia
14.
Front Cell Neurosci ; 14: 611379, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519384

RESUMO

Autism spectrum disorder (ASD) is characterized by impaired social interaction, language delay and repetitive or restrictive behaviors. With increasing prevalence, ASD is currently estimated to affect 0.5-2.0% of the global population. However, its etiology remains unclear due to high genetic and phenotypic heterogeneity. Copy number variations (CNVs) are implicated in several forms of syndromic ASD and have been demonstrated to contribute toward ASD development by altering gene dosage and expression. Increasing evidence points toward the p-arm of chromosome 3 (chromosome 3p) as an ASD risk locus. Deletions occurring at chromosome 3p result in 3p-deletion syndrome (Del3p), a rare genetic disorder characterized by developmental delay, intellectual disability, facial dysmorphisms and often, ASD or ASD-associated behaviors. Therefore, we hypothesize that overlapping molecular mechanisms underlie the pathogenesis of Del3p and ASD. To investigate which genes encoded in chromosome 3p could contribute toward Del3p and ASD, we performed a comprehensive literature review and collated reports investigating the phenotypes of individuals with chromosome 3p CNVs. We observe that high frequencies of CNVs occur in the 3p26.3 region, the terminal cytoband of chromosome 3p. This suggests that CNVs disrupting genes encoded within the 3p26.3 region are likely to contribute toward the neurodevelopmental phenotypes observed in individuals affected by Del3p. The 3p26.3 region contains three consecutive genes encoding closely related neuronal immunoglobulin cell adhesion molecules (IgCAMs): Close Homolog of L1 (CHL1), Contactin-6 (CNTN6), and Contactin-4 (CNTN4). CNVs disrupting these neuronal IgCAMs may contribute toward ASD phenotypes as they have been associated with key roles in neurodevelopment. CHL1, CNTN6, and CNTN4 have been observed to promote neurogenesis and neuronal survival, and regulate neuritogenesis and synaptic function. Furthermore, there is evidence that these neuronal IgCAMs possess overlapping interactomes and participate in common signaling pathways regulating axon guidance. Notably, mouse models deficient for these neuronal IgCAMs do not display strong deficits in axonal migration or behavioral phenotypes, which is in contrast to the pronounced defects in neuritogenesis and axon guidance observed in vitro. This suggests that when CHL1, CNTN6, or CNTN4 function is disrupted by CNVs, other neuronal IgCAMs may suppress behavioral phenotypes by compensating for the loss of function.

15.
Neuroscience ; 372: 114-125, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29306053

RESUMO

Morphological screening of mouse brains with known behavioral deficits can give great insight into the relationship between brain regions and their behavior. Oxytocin- and CD38-deficient mice have previously been shown to have behavioral phenotypes, such as restrictions in social memory, social interactions, and maternal behavior. CD38 is reported as an autism spectrum disorder (ASD) candidate gene and its behavioral phenotypes may be linked to ASD. To address whether these behavioral phenotypes relate to brain pathology and neuronal morphology, here we investigate the morphological changes in the CD38-deficient mice brains, with focus on the pathology and neuronal morphology of the cortex and hippocampus, using Nissl staining, immunohistochemistry, and Golgi staining. No difference was found in terms of cortical layer thickness. However, we found abnormalities in the number of neurons and neuronal morphology in the visual cortex and dentate gyrus (DG). In particular, there were arborisation differences between CD38-/- and CD38+/+ mice in the apical dendrites of the visual cortex and hippocampal CA1 pyramidal neurons. The data suggest that CD38 is implicated in appropriate development of brain regions important for social behavior.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Dendritos/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Glicoproteínas de Membrana/metabolismo , Córtex Visual/citologia , Córtex Visual/metabolismo , ADP-Ribosil Ciclase 1/genética , Animais , Contagem de Células , Dendritos/patologia , Hipocampo/patologia , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos ICR , Camundongos Knockout , Microscopia Confocal , Proteínas Nucleares/metabolismo , Tamanho do Órgão , Células Piramidais/citologia , Células Piramidais/metabolismo , Células Piramidais/patologia , Proteínas Repressoras/metabolismo , Coloração pela Prata , Córtex Visual/patologia
16.
Cell Adh Migr ; 10(4): 378-92, 2016 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-26939565

RESUMO

The gene encoding the neural cell adhesion molecule Contactin-6 (Cntn6 a.k.a. NB-3) has been implicated as an autism risk gene, suggesting that its mutation is deleterious to brain development. Due to its GPI-anchor at Cntn6 may exert cell adhesion/receptor functions in complex with other membrane proteins, or serve as a ligand. We aimed to uncover novel phenotypes related to Cntn6 functions during development in the cerebral cortex of adult Cntn6(-/-) mice. We first determined Cntn6 protein and mRNA expression in the cortex, thalamic nuclei and the hippocampus at P14, which decreased specifically in the cortex at adult stages. Neuroanatomical analysis demonstrated a significant decrease of Cux1+ projection neurons in layers II-IV and an increase of FoxP2+ projection neurons in layer VI in the visual cortex of adult Cntn6(-/-) mice compared to wild-type controls. Furthermore, the number of parvalbumin+ (PV) interneurons was decreased in Cntn6(-/-) mice, while the amount of NPY+ interneurons remained unchanged. In the hippocampus the delineation and outgrowth of mossy fibers remained largely unchanged, except for the observation of a larger suprapyramidal bundle. The observed abnormalities in the cerebral cortex and hippocampus of Cntn6(-/-) mice suggests that Cntn6 serves developmental functions involving cell survival, migration and fasciculation. Furthermore, these data suggest that Cntn6 engages in both trans- and cis-interactions and may be involved in larger protein interaction networks.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Envelhecimento/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/genética , Contagem de Células , Interneurônios/metabolismo , Camundongos Endogâmicos C57BL , Fibras Musgosas Hipocampais/metabolismo , Neuropeptídeo Y/metabolismo , Parvalbuminas/metabolismo , Células Piramidais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Córtex Visual/metabolismo
17.
Front Mol Neurosci ; 9: 143, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28018171

RESUMO

In view of important neurobiological functions of the cell adhesion molecule contactin-6 (Cntn6) that have emerged from studies on null-mutant mice and autism spectrum disorders patients, we set out to examine pathways underlying functions of Cntn6 using a proteomics approach. We identified the cell adhesion GPCR latrophilin-1 (Lphn1, a.k.a. CIRL1/CL, ADGRL1) as a binding partner for Cntn6 forming together a heteromeric cis-complex. Lphn1 expression in cultured neurons caused reduction in neurite outgrowth and increase in apoptosis, which was rescued by coexpression of Cntn6. In cultured neurons derived from Cntn6-/- mice, Lphn1 knockdown reduced apoptosis, suggesting that the observed apoptosis was Lphn1-dependent. In line with these data, the number of apoptotic cells was increased in the cortex of Cntn6-/- mice compared to wild-type littermate controls. These results show that Cntn6 can modulate the activity of Lphn1 by direct binding and suggests that Cntn6 may prevent apoptosis thereby impinging on neurodevelopment.

18.
Neuron ; 88(6): 1173-1191, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26627310

RESUMO

Autism spectrum disorder (ASD) is a heritable, common neurodevelopmental disorder with diverse genetic causes. Several studies have implicated protein synthesis as one among several of its potential convergent mechanisms. We originally identified Janus kinase and microtubule-interacting protein 1 (JAKMIP1) as differentially expressed in patients with distinct syndromic forms of ASD, fragile X syndrome, and 15q duplication syndrome. Here, we provide multiple lines of evidence that JAKMIP1 is a component of polyribosomes and an RNP translational regulatory complex that includes fragile X mental retardation protein, DEAD box helicase 5, and the poly(A) binding protein cytoplasmic 1. JAKMIP1 loss dysregulates neuronal translation during synaptic development, affecting glutamatergic NMDAR signaling, and results in social deficits, stereotyped activity, abnormal postnatal vocalizations, and other autistic-like behaviors in the mouse. These findings define an important and novel role for JAKMIP1 in neural development and further highlight pathways regulating mRNA translation during synaptogenesis in the genesis of neurodevelopmental disorders.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Redes Reguladoras de Genes/fisiologia , Biossíntese de Proteínas/fisiologia , Proteínas de Ligação a RNA/fisiologia , Sinapses/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Proteômica/métodos
19.
Biol Psychiatry ; 78(7): 485-95, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25802080

RESUMO

BACKGROUND: Quantitative genetic analysis of basic mouse behaviors is a powerful tool to identify novel genetic phenotypes contributing to neurobehavioral disorders. Here, we analyzed genetic contributions to single-trial, long-term social and nonsocial recognition and subsequently studied the functional impact of an identified candidate gene on behavioral development. METHODS: Genetic mapping of single-trial social recognition was performed in chromosome substitution strains, a sophisticated tool for detecting quantitative trait loci (QTL) of complex traits. Follow-up occurred by generating and testing knockout (KO) mice of a selected QTL candidate gene. Functional characterization of these mice was performed through behavioral and neurological assessments across developmental stages and analyses of gene expression and brain morphology. RESULTS: Chromosome substitution strain 14 mapping studies revealed an overlapping QTL related to long-term social and object recognition harboring Pcdh9, a cell-adhesion gene previously associated with autism spectrum disorder. Specific long-term social and object recognition deficits were confirmed in homozygous (KO) Pcdh9-deficient mice, while heterozygous mice only showed long-term social recognition impairment. The recognition deficits in KO mice were not associated with alterations in perception, multi-trial discrimination learning, sociability, behavioral flexibility, or fear memory. Rather, KO mice showed additional impairments in sensorimotor development reflected by early touch-evoked biting, rotarod performance, and sensory gating deficits. This profile emerged with structural changes in deep layers of sensory cortices, where Pcdh9 is selectively expressed. CONCLUSIONS: This behavior-to-gene study implicates Pcdh9 in cognitive functions required for long-term social and nonsocial recognition. This role is supported by the involvement of Pcdh9 in sensory cortex development and sensorimotor phenotypes.


Assuntos
Atividade Motora/fisiologia , Reconhecimento Psicológico/fisiologia , Córtex Sensório-Motor/patologia , Filtro Sensorial/fisiologia , Percepção Social , Animais , Aprendizagem por Associação/fisiologia , Mapeamento Cromossômico , Cognição/fisiologia , Dendritos/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , Fenótipo , Locos de Características Quantitativas , Córtex Sensório-Motor/crescimento & desenvolvimento , Córtex Sensório-Motor/fisiopatologia , Filtro Sensorial/genética
20.
Methods Enzymol ; 534: 323-30, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24359962

RESUMO

The nine neurodegenerative disorders including Huntington disease (HD) are caused by the expansion of a trinucleotide CAG repeats (polyQ), which are located within the coding of the affected gene. Previous studies suggested that a gain of toxic function by polyQ repeats is widely thought to have a major role in pathogenesis. PolyQ-expanded htt induced ubiquitinated aggregates cause cell death in neuronal cells. Using a HD cellular model, we demonstrate that Tollip protects cells against the toxicity of polyQ-expanded htt and also protects cells from death (Oguro, Kubota, Shimizu, Ishiura, & Atomi, 2011). Tom1 which belongs to the VHS domain-containing protein family is also found to be directly binding to ubiquitin chains and Tollip (Katoh et al., 2004; Yamakami, Yoshimori, & Yokosawa, 2003). Tollip recruits misfolded protein to aggresome via late endosome. The cell system can be used to determine if your protein of interest is controlled under a part of Tollip pathway or not among other cell homeostatic systems: molecular chaperons, autophagy, and endoplasmic reticulum (ER)-associated degradation (ERAD). Tollip can be used for polyQ cell toxicity sensor by detecting microtubule-dependent trafficking and aggresome colocalization of aggregated protein.


Assuntos
Endossomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Ubiquitina/metabolismo , Morte Celular , Linhagem Celular , Citoesqueleto/química , Citoesqueleto/metabolismo , Endossomos/química , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas do Tecido Nervoso/genética , Neurônios/patologia , Ligação Proteica , Proteólise , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Ubiquitina/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa