Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 184(10): 2779-2792.e18, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33915107

RESUMO

Ligands can induce G protein-coupled receptors (GPCRs) to adopt a myriad of conformations, many of which play critical roles in determining the activation of specific signaling cascades associated with distinct functional and behavioral consequences. For example, the 5-hydroxytryptamine 2A receptor (5-HT2AR) is the target of classic hallucinogens, atypical antipsychotics, and psychoplastogens. However, currently available methods are inadequate for directly assessing 5-HT2AR conformation both in vitro and in vivo. Here, we developed psychLight, a genetically encoded fluorescent sensor based on the 5-HT2AR structure. PsychLight detects behaviorally relevant serotonin release and correctly predicts the hallucinogenic behavioral effects of structurally similar 5-HT2AR ligands. We further used psychLight to identify a non-hallucinogenic psychedelic analog, which produced rapid-onset and long-lasting antidepressant-like effects after a single administration. The advent of psychLight will enable in vivo detection of serotonin dynamics, early identification of designer drugs of abuse, and the development of 5-HT2AR-dependent non-hallucinogenic therapeutics.


Assuntos
Técnicas Biossensoriais , Drogas Desenhadas/química , Drogas Desenhadas/farmacologia , Descoberta de Drogas/métodos , Alucinógenos/química , Alucinógenos/farmacologia , Receptor 5-HT2A de Serotonina/química , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Fluorescência , Corantes Fluorescentes/química , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fotometria , Conformação Proteica , Engenharia de Proteínas , Receptor 5-HT2A de Serotonina/genética , Receptor 5-HT2A de Serotonina/metabolismo , Serotonina/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35074912

RESUMO

Balanced synaptic inhibition, controlled by multiple synaptic adhesion proteins, is critical for proper brain function. MDGA1 (meprin, A-5 protein, and receptor protein-tyrosine phosphatase mu [MAM] domain-containing glycosylphosphatidylinositol anchor protein 1) suppresses synaptic inhibition in mammalian neurons, yet the molecular mechanisms underlying MDGA1-mediated negative regulation of GABAergic synapses remain unresolved. Here, we show that the MDGA1 MAM domain directly interacts with the extension domain of amyloid precursor protein (APP). Strikingly, MDGA1-mediated synaptic disinhibition requires the MDGA1 MAM domain and is prominent at distal dendrites of hippocampal CA1 pyramidal neurons. Down-regulation of APP in presynaptic GABAergic interneurons specifically suppressed GABAergic, but not glutamatergic, synaptic transmission strength and inputs onto both the somatic and dendritic compartments of hippocampal CA1 pyramidal neurons. Moreover, APP deletion manifested differential effects in somatostatin- and parvalbumin-positive interneurons in the hippocampal CA1, resulting in distinct alterations in inhibitory synapse numbers, transmission, and excitability. The infusion of MDGA1 MAM protein mimicked postsynaptic MDGA1 gain-of-function phenotypes that involve the presence of presynaptic APP. The overexpression of MDGA1 wild type or MAM, but not MAM-deleted MDGA1, in the hippocampal CA1 impaired novel object-recognition memory in mice. Thus, our results establish unique roles of APP-MDGA1 complexes in hippocampal neural circuits, providing unprecedented insight into trans-synaptic mechanisms underlying differential tuning of neuronal compartment-specific synaptic inhibition.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Moléculas de Adesão de Célula Nervosa/genética , Inibição Neural , Sinapses/metabolismo , Precursor de Proteína beta-Amiloide/genética , Região CA1 Hipocampal , Proteínas de Transporte , Dendritos/metabolismo , Neurônios GABAérgicos/metabolismo , Interneurônios , Modelos Biológicos , Moléculas de Adesão de Célula Nervosa/química , Moléculas de Adesão de Célula Nervosa/metabolismo , Inibição Neural/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Células Piramidais/metabolismo , Receptores de GABA-B/metabolismo , Transmissão Sináptica
3.
Mol Psychiatry ; 28(8): 3397-3413, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37433966

RESUMO

Thousands of people suffer from nausea with pregnancy each year. Nausea can be alleviated with cannabidiol (CBD), a primary component of cannabis that is widely available. However, it is unknown how fetal CBD exposure affects embryonic development and postnatal outcomes. CBD binds and activates receptors that are expressed in the fetal brain and are important for brain development, including serotonin receptors (5HT1A), voltage-gated potassium (Kv)7 receptors, and the transient potential vanilloid 1 receptor (TRPV1). Excessive activation of each of these receptors can disrupt neurodevelopment. Here, we test the hypothesis that fetal CBD exposure in mice alters offspring neurodevelopment and postnatal behavior. We administered 50 mg/kg CBD in sunflower oil or sunflower oil alone to pregnant mice from embryonic day 5 through birth. We show that fetal CBD exposure sensitizes adult male offspring to thermal pain through TRPV1. We show that fetal CBD exposure decreases problem-solving behaviors in female CBD-exposed offspring. We demonstrate that fetal CBD exposure increases the minimum current required to elicit action potentials and decreases the number of action potentials in female offspring layer 2/3 prefrontal cortex (PFC) pyramidal neurons. Fetal CBD exposure reduces the amplitude of glutamate uncaging-evoked excitatory post-synaptic currents, consistent with CBD-exposed female problem-solving behavior deficits. Combined, these data show that fetal CBD exposure disrupts neurodevelopment and postnatal behavior in a sex specific manner.


Assuntos
Canabidiol , Humanos , Gravidez , Masculino , Feminino , Camundongos , Animais , Canabidiol/farmacologia , Canabidiol/metabolismo , Óleo de Girassol/metabolismo , Córtex Pré-Frontal/metabolismo , Dor/metabolismo , Náusea/metabolismo
4.
Bioessays ; 44(11): e2200134, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36089658

RESUMO

Bidirectional trans-synaptic signaling is essential for the formation, maturation, and plasticity of synaptic connections. Synaptic cell adhesion molecules (CAMs) are prime drivers in shaping the identities of trans-synaptic signaling pathways. A series of recent studies provide evidence that diverse presynaptic cell adhesion proteins dictate the regulation of specific synaptic properties in postsynaptic neurons. Focusing on mammalian synaptic CAMs, this article outlines several exemplary cases supporting this notion and highlights how these trans-synaptic signaling pathways collectively contribute to the specificity and diversity of neural circuit architecture.


Assuntos
Neurônios , Sinapses , Animais , Sinapses/metabolismo , Neurônios/metabolismo , Moléculas de Adesão Celular/metabolismo , Comunicação Celular , Mamíferos/metabolismo
5.
Nat Methods ; 14(5): 495-503, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28369042

RESUMO

Few tools exist to visualize and manipulate neurons that are targets of neuromodulators. We present iTango, a light- and ligand-gated gene expression system based on a light-inducible split tobacco etch virus protease. Cells expressing the iTango system exhibit increased expression of a marker gene in the presence of dopamine and blue-light exposure, both in vitro and in vivo. We demonstrated the iTango system in a behaviorally relevant context, by inducing expression of optogenetic tools in neurons under dopaminergic control during a behavior of interest. We thereby gained optogenetic control of these behaviorally relevant neurons. We applied the iTango system to decipher the roles of two classes of dopaminergic neurons in the mouse nucleus accumbens in a sensitized locomotor response to cocaine. Thus, the iTango platform allows for control of neuromodulatory circuits in a genetically and functionally defined manner with spatial and temporal precision.


Assuntos
Encéfalo/metabolismo , Dopamina/metabolismo , Expressão Gênica , Luz , Vias Neurais/fisiologia , Optogenética/métodos , Animais , Comportamento Animal/fisiologia , Encéfalo/citologia , Mapeamento Encefálico/métodos , Dopamina/farmacologia , Endopeptidases/genética , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/efeitos da radiação , Células HEK293 , Humanos , Ligantes , Camundongos , Neurônios/metabolismo , Estimulação Luminosa , Ratos , Receptores de Dopamina D2/genética , Razão Sinal-Ruído
6.
Proc Natl Acad Sci U S A ; 113(10): E1372-81, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26903616

RESUMO

During cortical circuit development in the mammalian brain, groups of excitatory neurons that receive similar sensory information form microcircuits. However, cellular mechanisms underlying cortical microcircuit development remain poorly understood. Here we implemented combined two-photon imaging and photolysis in vivo to monitor and manipulate neuronal activities to study the processes underlying activity-dependent circuit changes. We found that repeated triggering of spike trains in a randomly chosen group of layer 2/3 pyramidal neurons in the somatosensory cortex triggered long-term plasticity of circuits (LTPc), resulting in the increased probability that the selected neurons would fire when action potentials of individual neurons in the group were evoked. Significant firing pattern changes were observed more frequently in the selected group of neurons than in neighboring control neurons, and the induction was dependent on the time interval between spikes, N-methyl-D-aspartate (NMDA) receptor activation, and Calcium/calmodulin-dependent protein kinase II (CaMKII) activation. In addition, LTPc was associated with an increase of activity from a portion of neighboring neurons with different probabilities. Thus, our results demonstrate that the formation of functional microcircuits requires broad network changes and that its directionality is nonrandom, which may be a general feature of cortical circuit assembly in the mammalian cortex.


Assuntos
Potenciais de Ação/fisiologia , Rede Nervosa/fisiologia , Células Piramidais/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Potenciação de Longa Duração/fisiologia , Camundongos Endogâmicos C57BL , Microscopia Confocal , Modelos Neurológicos , Plasticidade Neuronal/fisiologia , Técnicas de Patch-Clamp , Células Piramidais/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Córtex Somatossensorial/citologia , Córtex Somatossensorial/metabolismo
7.
Proc Natl Acad Sci U S A ; 110(4): E305-12, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23269840

RESUMO

Refinement of neural circuits in the mammalian cerebral cortex shapes brain function during development and in the adult. However, the signaling mechanisms underlying the synapse-specific shrinkage and loss of spiny synapses when neural circuits are remodeled remain poorly defined. Here, we show that low-frequency glutamatergic activity at individual dendritic spines leads to synapse-specific synaptic weakening and spine shrinkage on CA1 neurons in the hippocampus. We found that shrinkage of individual spines in response to low-frequency glutamate uncaging is saturable, reversible, and requires NMDA receptor activation. Notably, shrinkage of large spines additionally requires signaling through metabotropic glutamate receptors (mGluRs) and inositol 1,4,5-trisphosphate receptors (IP(3)Rs), supported by higher levels of mGluR signaling activity in large spines. Our results support a model in which signaling through both NMDA receptors and mGluRs is required to drive activity-dependent synaptic weakening and spine shrinkage at large, mature dendritic spines when neural circuits undergo experience-dependent modification.


Assuntos
Espinhas Dendríticas/fisiologia , Sinapses/fisiologia , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/ultraestrutura , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/ultraestrutura , Estimulação Elétrica , Glutamatos/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Indóis/farmacologia , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Microscopia de Fluorescência por Excitação Multifotônica , Modelos Neurológicos , Plasticidade Neuronal/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Transdução de Sinais , Sinapses/efeitos dos fármacos , Sinapses/ultraestrutura , Transfecção
8.
Nat Commun ; 15(1): 1368, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365905

RESUMO

Serotonin (5-HT) imbalances in the developing prefrontal cortex (PFC) are linked to long-term behavioral deficits. However, the synaptic mechanisms underlying 5-HT-mediated PFC development are unknown. We found that chemogenetic suppression and enhancement of 5-HT release in the PFC during the first two postnatal weeks decreased and increased the density and strength of excitatory spine synapses, respectively, on prefrontal layer 2/3 pyramidal neurons in mice. 5-HT release on single spines induced structural and functional long-term potentiation (LTP), requiring both 5-HT2A and 5-HT7 receptor signals, in a glutamatergic activity-independent manner. Notably, LTP-inducing 5-HT stimuli increased the long-term survival of newly formed spines ( ≥ 6 h) via 5-HT7 Gαs activation. Chronic treatment of mice with fluoxetine, a selective serotonin-reuptake inhibitor, during the first two weeks, but not the third week of postnatal development, increased the density and strength of excitatory synapses. The effect of fluoxetine on PFC synaptic alterations in vivo was abolished by 5-HT2A and 5-HT7 receptor antagonists. Our data describe a molecular basis of 5-HT-dependent excitatory synaptic plasticity at the level of single spines in the PFC during early postnatal development.


Assuntos
Fluoxetina , Serotonina , Camundongos , Animais , Serotonina/farmacologia , Fluoxetina/farmacologia , Células Piramidais/fisiologia , Córtex Pré-Frontal/fisiologia , Sinapses/fisiologia
9.
Neuron ; 111(3): 362-371.e6, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36395772

RESUMO

Dendritic spines can be directly connected to both inhibitory and excitatory presynaptic terminals, resulting in nanometer-scale proximity of opposing synaptic functions. While dually innervated spines (DiSs) are observed throughout the central nervous system, their developmental timeline and functional properties remain uncharacterized. Here we used a combination of serial section electron microscopy, live imaging, and local synapse activity manipulations to investigate DiS development and function in rodent hippocampus. Dual innervation occurred early in development, even on spines where the excitatory input was locally silenced. Synaptic NMDA receptor currents were selectively reduced at DiSs through tonic GABAB receptor signaling. Accordingly, spine enlargement normally associated with long-term potentiation on singly innervated spines (SiSs) was blocked at DiSs. Silencing somatostatin interneurons or pharmacologically blocking GABABRs restored NMDA receptor function and structural plasticity to levels comparable to neighboring SiSs. Thus, hippocampal DiSs are stable structures where function and plasticity are potently regulated by nanometer-scale GABAergic signaling.


Assuntos
Espinhas Dendríticas , Receptores de N-Metil-D-Aspartato , Espinhas Dendríticas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Sinapses/fisiologia , Ácido gama-Aminobutírico , Plasticidade Neuronal/fisiologia
10.
J Neurosci ; 31(34): 12129-38, 2011 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-21865455

RESUMO

Changes in neuronal structure are thought to underlie long-term behavioral modifications associated with learning and memory. In particular, considerable evidence implicates the destabilization and retraction of dendritic spines along with the loss of spine synapses as an important cellular mechanism for refining brain circuits, yet the molecular mechanisms regulating spine elimination remain ill-defined. The postsynaptic density protein, PSD-95, is highly enriched in dendritic spines and has been associated with spine stability. Because spines with low levels of PSD-95 are more dynamic, and the recruitment of PSD-95 to nascent spines has been associated with spine stabilization, we hypothesized that loss of PSD-95 enrichment would be a prerequisite for spine retraction. To test this hypothesis, we used dual-color time-lapse two-photon microscopy to monitor rat hippocampal pyramidal neurons cotransfected with PSD-95-GFP and DsRed-Express, and we analyzed the relationship between PSD-95-GFP enrichment and spine morphological changes. Consistent with our hypothesis, we found that the majority of spines that retracted were relatively unenriched for PSD-95-GFP. However, in the subset of PSD-95-GFP-enriched spines that retracted, spine shrinkage and loss of PSD-95-GFP were tightly coupled, suggesting that loss of PSD-95-GFP enrichment did not precede spine retraction. Moreover, we found that, in some instances, spine retraction resulted in a significant enrichment of PSD-95-GFP on the dendritic shaft. Our data support a model of spine retraction in which loss of PSD-95 enrichment is not required prior to the destabilization of spines.


Assuntos
Espinhas Dendríticas/fisiologia , Hipocampo/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Membrana/fisiologia , Plasticidade Neuronal/genética , Células Piramidais/fisiologia , Células Piramidais/ultraestrutura , Animais , Espinhas Dendríticas/genética , Proteína 4 Homóloga a Disks-Large , Feminino , Hipocampo/citologia , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Técnicas de Cultura de Órgãos , Estabilidade de RNA/fisiologia , Ratos , Sinapses/genética , Transfecção/métodos
11.
STAR Protoc ; 2(4): 100996, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34950882

RESUMO

Shrinkage and loss of dendritic spines are vital components of the neuronal plasticity that supports learning. To investigate the mechanisms of spine shrinkage and loss, Oh and colleagues established a two-photon glutamate uncaging protocol that reliably induces input-specific spine shrinkage on dendrites of rodent hippocampal CA1 pyramidal neurons. Here, we provide a detailed description of that protocol and also an optimized version that can be used to induce input- and synapse-specific shrinkage of dendritic spines at physiological Ca2+ levels. For complete details on the use and execution of this protocol, please refer to Oh et al. (2013), Stein et al. (2015), Stein et al. (2020), and Stein et al. (2021).


Assuntos
Região CA1 Hipocampal/metabolismo , Ácido Glutâmico/metabolismo , Células Piramidais/metabolismo , Animais , Região CA1 Hipocampal/citologia , Espinhas Dendríticas/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fótons , Ratos , Ratos Sprague-Dawley
12.
Cell Rep ; 35(5): 109074, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33951422

RESUMO

Stress adversely affects an array of cognitive functions. Although stress-related disorders are often addressed in adulthood, far less is known about how early-life stress (ELS) affects the developing brain in early postnatal periods. Here we show that ELS, induced by maternal separation, leads to synaptic alteration of layer 2/3 pyramidal neurons in the prefrontal cortex (PFC) of mice. We find that layer 2/3 neurons show increased excitatory synapse numbers following ELS and that this is accompanied by hyperexcitability of PFC-projecting dopamine (DA) neurons in the ventral tegmental area. Notably, excitatory synaptic change requires local signaling through DA D2 receptors. In vivo pharmacological treatment with a D2 receptor agonist in the PFC of control mice mimics the effects of ELS on synaptic alterations. Our findings reveal a neuromodulatory mechanism underlying ELS-induced PFC dysfunction, and this mechanism may facilitate a more comprehensive understanding of how ELS leads to mental disorders.


Assuntos
Dopamina/metabolismo , Córtex Pré-Frontal/fisiologia , Animais , Masculino , Camundongos
13.
eNeuro ; 7(6)2020.
Artigo em Inglês | MEDLINE | ID: mdl-33109633

RESUMO

Precise information on synapse organization in a dendrite is crucial to understanding the mechanisms underlying voltage integration and the variability in the strength of synaptic inputs across dendrites of different complex morphologies. Here, we used focused ion beam/scanning electron microscope (FIB/SEM) to image the dendritic spines of mice in the hippocampal CA1 region, CA3 region, somatosensory cortex, striatum, and cerebellum (CB). Our results show that the spine geometry and dimensions differ across neuronal cell types. Despite this difference, dendritic spines were organized in an orchestrated manner such that the postsynaptic density (PSD) area per unit length of dendrite scaled positively with the dendritic diameter in CA1 proximal stratum radiatum (PSR), cortex, and CB. The ratio of the PSD area to neck length was kept relatively uniform across dendrites of different diameters in CA1 PSR. Computer simulation suggests that a similar level of synaptic strength across different dendrites in CA1 PSR enables the effective transfer of synaptic inputs from the dendrites toward soma. Excitatory postsynaptic potentials (EPSPs), evoked at single spines by glutamate uncaging and recorded at the soma, show that the neck length is more influential than head width in regulating the EPSP magnitude at the soma. Our study describes thorough morphologic features and the organizational principles of dendritic spines in different brain regions.


Assuntos
Dendritos , Sinapses , Animais , Simulação por Computador , Potenciais Pós-Sinápticos Excitadores , Camundongos , Neurônios
14.
Brain Res ; 1707: 18-26, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30439352

RESUMO

In the brain, dendrites of pyramidal neurons contain intermingled excitatory and inhibitory synapses. Synaptic connections dynamically change during development and throughout our lifetime, yet the brain can properly maintain an optimal ratio of synaptic excitation to inhibition. Despite recent advances in our understanding of the formation and refinement of excitatory glutamatergic synapses, little is known about signals that regulate inhibitory GABAergic synapse development. In this review, we discuss previous and recent insights in the cellular and molecular mechanisms that underlie GABAergic synapse formation and plasticity, with a specific focus on the key roles of synaptic activity and postsynaptic membrane molecules.


Assuntos
Neurônios GABAérgicos/metabolismo , Células Piramidais/fisiologia , Sinapses/fisiologia , Animais , Encéfalo/metabolismo , Neurônios GABAérgicos/fisiologia , Humanos , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/fisiologia , Células Piramidais/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
15.
Nat Commun ; 10(1): 211, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30643148

RESUMO

Ras and Rho small GTPases are critical for numerous cellular processes including cell division, migration, and intercellular communication. Despite extensive efforts to visualize the spatiotemporal activity of these proteins, achieving the sensitivity and dynamic range necessary for in vivo application has been challenging. Here, we present highly sensitive intensiometric small GTPase biosensors visualizing the activity of multiple small GTPases in single cells in vivo. Red-shifted sensors combined with blue light-controllable optogenetic modules achieved simultaneous monitoring and manipulation of protein activities in a highly spatiotemporal manner. Our biosensors revealed spatial dynamics of Cdc42 and Ras activities upon structural plasticity of single dendritic spines, as well as a broad range of subcellular Ras activities in the brains of freely behaving mice. Thus, these intensiometric small GTPase sensors enable the spatiotemporal dissection of complex protein signaling networks in live animals.


Assuntos
Técnicas Biossensoriais/métodos , Proteínas Monoméricas de Ligação ao GTP/análise , Optogenética/métodos , Transdução de Sinais , Análise de Célula Única/métodos , Animais , Técnicas Biossensoriais/instrumentação , Espinhas Dendríticas/metabolismo , Embrião de Mamíferos , Feminino , Células HeLa , Hipocampo/citologia , Humanos , Microscopia Intravital/instrumentação , Microscopia Intravital/métodos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Optogenética/instrumentação , Técnicas de Cultura de Órgãos , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Análise de Célula Única/instrumentação , Técnicas Estereotáxicas , Imagem com Lapso de Tempo
16.
Elife ; 72018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29419376

RESUMO

Stress can be a motivational force for decisive action and adapting to novel environment; whereas, exposure to chronic stress contributes to the development of depression and anxiety. However, the molecular mechanisms underlying stress-responsive behaviors are not fully understood. Here, we identified the orphan receptor GPR158 as a novel regulator operating in the prefrontal cortex (PFC) that links chronic stress to depression. GPR158 is highly upregulated in the PFC of human subjects with major depressive disorder. Exposure of mice to chronic stress also increased GPR158 protein levels in the PFC in a glucocorticoid-dependent manner. Viral overexpression of GPR158 in the PFC induced depressive-like behaviors. In contrast GPR158 ablation, led to a prominent antidepressant-like phenotype and stress resiliency. We found that GPR158 exerts its effects via modulating synaptic strength altering AMPA receptor activity. Taken together, our findings identify a new player in mood regulation and introduce a pharmacological target for managing depression.


Assuntos
Depressão/fisiopatologia , Regulação da Expressão Gênica , Córtex Pré-Frontal/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Estresse Psicológico , Animais , Humanos , Camundongos
17.
Neuron ; 94(2): 304-311.e4, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28426965

RESUMO

Dendritic spines are the major transmitter reception compartments of glutamatergic synapses in most principal neurons of the mammalian brain and play a key role in the function of nerve cell circuits. The formation of functional spine synapses is thought to be critically dependent on presynaptic glutamatergic signaling. By analyzing CA1 pyramidal neurons in mutant hippocampal slice cultures that are essentially devoid of presynaptic transmitter release, we demonstrate that the formation and maintenance of dendrites and functional spines are independent of synaptic glutamate release.


Assuntos
Cálcio/metabolismo , Dendritos/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Sinapses/metabolismo , Animais , Espinhas Dendríticas/metabolismo , Camundongos , Transdução de Sinais/fisiologia , Sinapses/fisiologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-27445785

RESUMO

The complex information-processing capabilities of the central nervous system emerge from intricate patterns of synaptic input-output relationships among various neuronal circuit components. Understanding these capabilities thus requires a precise description of the individual synapses that comprise neural networks. Recent advances in fluorescent protein engineering, along with developments in light-favoring tissue clearing and optical imaging techniques, have rendered light microscopy (LM) a potent candidate for large-scale analyses of synapses, their properties, and their connectivity. Optically imaging newly engineered fluorescent proteins (FPs) tagged to synaptic proteins or microstructures enables the efficient, fine-resolution illumination of synaptic anatomy and function in large neural circuits. Here we review the latest progress in fluorescent protein-based molecular tools for imaging individual synapses and synaptic connectivity. We also identify associated technologies in gene delivery, tissue processing, and computational image analysis that will play a crucial role in bridging the gap between synapse- and system-level neuroscience.

19.
Science ; 353(6303): 1037-1040, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27516412

RESUMO

Dendrites of cortical pyramidal neurons contain intermingled excitatory and inhibitory synapses. We studied the local mechanisms that regulate the formation and distribution of synapses. We found that local γ-aminobutyric acid (GABA) release on dendrites of mouse cortical layer 2/3 pyramidal neurons could induce gephyrin puncta and dendritic spine formation via GABA type A receptor activation and voltage-gated calcium channels during early postnatal development. Furthermore, the newly formed inhibitory and excitatory synaptic structures rapidly gained functions. Bidirectional manipulation of GABA release from somatostatin-positive interneurons increased and decreased the number of gephyrin puncta and dendritic spines, respectively. These results highlight a noncanonical function of GABA as a local synaptogenic element shaping the early establishment of neuronal circuitry in mouse cortex.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Neurogênese , Células Piramidais/fisiologia , Sinapses/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Proteínas de Transporte/metabolismo , Córtex Cerebral/citologia , Dendritos/fisiologia , Espinhas Dendríticas/fisiologia , Feminino , Interneurônios/metabolismo , Interneurônios/fisiologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Células Piramidais/metabolismo , Receptores de GABA-A/metabolismo
20.
Neuron ; 89(4): 756-69, 2016 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-26853302

RESUMO

Older concepts of a hard-wired adult brain have been overturned in recent years by in vivo imaging studies revealing synaptic remodeling, now thought to mediate rearrangements in microcircuit connectivity. Using three-color labeling and spectrally resolved two-photon microscopy, we monitor in parallel the daily structural dynamics (assembly or removal) of excitatory and inhibitory postsynaptic sites on the same neurons in mouse visual cortex in vivo. We find that dynamic inhibitory synapses often disappear and reappear again in the same location. The starkest contrast between excitatory and inhibitory synapse dynamics is on dually innervated spines, where inhibitory synapses frequently recur while excitatory synapses are stable. Monocular deprivation, a model of sensory input-dependent plasticity, shortens inhibitory synapse lifetimes and lengthens intervals to recurrence, resulting in a new dynamic state with reduced inhibitory synaptic presence. Reversible structural dynamics indicate a fundamentally new role for inhibitory synaptic remodeling--flexible, input-specific modulation of stable excitatory connections.


Assuntos
Inibição Neural/fisiologia , Plasticidade Neuronal/fisiologia , Células Piramidais/ultraestrutura , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Córtex Visual/citologia , Animais , Proteínas de Transporte/metabolismo , Proteína 4 Homóloga a Disks-Large , Feminino , Lateralidade Funcional , Guanilato Quinases/genética , Guanilato Quinases/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibição Neural/genética , Técnicas de Cultura de Órgãos , Gravidez , Privação Sensorial , Sinapses/ultraestrutura , Ácido gama-Aminobutírico/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa