Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 206(3): e0045623, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38426722

RESUMO

Actinoplanes missouriensis is a filamentous bacterium that differentiates into terminal sporangia, each containing a few hundred spores. Previously, we reported that a cell wall-hydrolyzing N-acetylglucosaminidase, GsmA, is required for the maturation process of sporangiospores in A. missouriensis; sporangia of the gsmA null mutant (ΔgsmA) strain released chains of 2-20 spores under sporangium dehiscence-inducing conditions. In this study, we identified and characterized a putative cell wall hydrolase (AsmA) that is also involved in sporangiospore maturation. AsmA was predicted to have a signal peptide for the general secretion pathway and an N-acetylmuramoyl-l-alanine amidase domain. The transcript level of asmA increased during the early stages of sporangium formation. The asmA null mutant (ΔasmA) strain showed phenotypes similar to those of the wild-type strain, but sporangia of the ΔgsmAΔasmA double mutant released longer spore chains than those from the ΔgsmA sporangia. Furthermore, a weak interaction between AsmA and GsmA was detected in a bacterial two-hybrid assay using Escherichia coli as the host. Based on these results, we propose that AsmA is an enzyme that hydrolyzes peptidoglycan at septum-forming sites to separate adjacent spores during sporangiospore maturation in cooperation with GsmA in A. missouriensis.IMPORTANCEActinoplanes missouriensis produces sporangiospores as dormant cells. The spores inside the sporangia are assumed to be formed from prespores generated by the compartmentalization of intrasporangium hyphae via septation. Previously, we identified GsmA as a cell wall hydrolase responsible for the separation of adjacent spores inside sporangia. However, we predicted that an additional cell wall hydrolase(s) is inevitably involved in the maturation process of sporangiospores because the sporangia of the gsmA null mutant strain released not only tandemly connected spore chains (2-20 spores) but also single spores. In this study, we successfully identified a putative cell wall hydrolase (AsmA) that is involved in sporangiospore maturation in A. missouriensis.


Assuntos
Actinoplanes , N-Acetil-Muramil-L-Alanina Amidase , Esporos , Hidrolases , Parede Celular
2.
J Bacteriol ; 206(3): e0042823, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38353530

RESUMO

In Streptomyces, multiple paralogs of SsgA-like proteins (SALPs) are involved in spore formation from aerial hyphae. However, the functions of SALPs have not yet been elucidated in other actinobacterial genera. Here, we report the primary function of an SsgB ortholog (AmSsgB) in Actinoplanes missouriensis, which develops terminal sporangia on the substrate mycelia via short sporangiophores. Importantly, AmSsgB is the sole SALP in A. missouriensis. The transcription of AmssgB was upregulated during sporangium formation, consistent with our previous findings that AmssgB is a member of the AmBldD regulon. The AmssgB null mutant (ΔAmssgB) strain formed non-globose irregular structures on the substrate mycelium. Transmission electron microscopy revealed that the irregular structures contained abnormally septate hypha-like cells, without an intrasporangial matrix. These phenotypic changes were restored by complementation with AmssgB. Additionally, analysis of the heterologous expression of seven SALP-encoding genes from Streptomyces coelicolor A3(2) (ssgA-G) in the ΔAmssgB strain revealed that only ssgB could compensate for AmSsgB deficiency. This indicated that SsgB of S. coelicolor A3(2) and AmSsgB have comparable functions in A. missouriensis. In contrast to the ΔAmssgB strain, the ftsZ-disrupted strain showed a severe growth defect and produced small sporangium-like structures that swelled to some extent. These findings indicate that AmSsgB is crucial for the early stages of sporangium formation, not for spore septum formation in the late stages. We propose that AmSsgB is involved in sporangium formation by promoting the expansion of the "presporangium" structures formed on the tips of the substrate hyphae. IMPORTANCE: SsgB has been proposed as an archetypical SsgA-like protein with an evolutionarily conserved function in the morphological development of spore-forming actinomycetes. SsgB in Streptomyces coelicolor A3(2) is involved in spore septum formation. However, it is unclear whether this is the primary function of SsgBs in actinobacteria. This study demonstrated that the SsgB ortholog (AmSsgB) in Actinoplanes missouriensis is essential for sporangium expansion, which does not seem to be related to spore septum formation. However, the heterologous expression of ssgB from S. coelicolor A3(2) restored morphological abnormalities in the ΔAmssgB mutant. We propose that the primary function of SsgB is to initiate sporulation in differentiating cells (e.g., aerial hyphae in Streptomyces and "presporangium" cells in A. missouriensis) although its molecular mechanism remains unknown.


Assuntos
Actinobacteria , Actinoplanes , Streptomyces coelicolor , Streptomyces , Esporângios/metabolismo , Streptomyces/genética , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Actinobacteria/metabolismo , Proteínas de Bactérias/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo
3.
Chemistry ; 30(28): e202400271, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38456538

RESUMO

Cirratiomycin, a heptapeptide with antibacterial activity, was isolated and characterized in 1981; however, its biosynthetic pathway has not been elucidated. It contains several interesting nonproteinogenic amino acids, such as (2S,3S)-2,3-diaminobutyric acid ((2S,3S)-DABA) and α-(hydroxymethyl)serine, as building blocks. Here, we report the identification of a cirratiomycin biosynthetic gene cluster in Streptomyces cirratus. Bioinformatic analysis revealed that several Streptomyces viridifaciens and Kitasatospora aureofaciens strains also have this cluster. One S. viridifaciens strain was confirmed to produce cirratiomycin. The biosynthetic gene cluster was shown to be responsible for cirratiomycin biosynthesis in S. cirratus in a gene inactivation experiment using CRISPR-cBEST. Interestingly, this cluster encodes a nonribosomal peptide synthetase (NRPS) composed of 12 proteins, including those with an unusual domain organization: a stand-alone adenylation domain, two stand-alone condensation domains, two type II thioesterases, and two NRPS modules that have no adenylation domain. Using heterologous expression and in vitro analysis of recombinant enzymes, we revealed the biosynthetic pathway of (2S,3S)-DABA: (2S,3S)-DABA is synthesized from l-threonine by four enzymes, CirR, CirS, CirQ, and CirB. In addition, CirH, a glycine/serine hydroxymethyltransferase homolog, was shown to synthesize α-(hydroxymethyl)serine from d-serine in vitro. These findings broaden our knowledge of nonproteinogenic amino acid biosynthesis.


Assuntos
Vias Biossintéticas , Família Multigênica , Serina , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Serina/análogos & derivados , Serina/metabolismo , Serina/química , Serina/biossíntese , Peptídeo Sintases/metabolismo , Peptídeo Sintases/genética , Aminobutiratos/química , Aminobutiratos/metabolismo , Antibacterianos/biossíntese , Antibacterianos/química
4.
Biosci Biotechnol Biochem ; 88(2): 225-229, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37974049

RESUMO

The architecture of sporangia and zoospores of Actinoplanes missouriensis was analyzed at a high resolution using quick-freeze deep-etch replica electron microscopy. This analysis revealed that (i) sporangia were surrounded by at least 2 membranous layers with smooth surfaces, (ii) zoospores were enclosed by a fibrillar layer, and (iii) flagella were generated in a restricted area on the zoospore surface.


Assuntos
Actinoplanes , Esporângios , Microscopia Eletrônica , Flagelos
5.
Beilstein J Org Chem ; 20: 1-11, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38213839

RESUMO

Recently, we identified the biosynthetic gene cluster of avenalumic acid (ava cluster) and revealed its entire biosynthetic pathway, resulting in the discovery of a diazotization-dependent deamination pathway. Genome database analysis revealed the presence of more than 100 ava cluster-related biosynthetic gene clusters (BGCs) in actinomycetes; however, their functions remained unclear. In this study, we focused on an ava cluster-related BGC in Kutzneria albida (cma cluster), and revealed that it is responsible for p-coumaric acid biosynthesis by heterologous expression of the cma cluster and in vitro enzyme assays using recombinant Cma proteins. The ATP-dependent diazotase CmaA6 catalyzed the diazotization of both 3-aminocoumaric acid and 3-aminoavenalumic acid using nitrous acid in vitro. In addition, the high efficiency of the CmaA6 reaction enabled us to perform a kinetic analysis of AvaA7, which confirmed that AvaA7 catalyzes the denitrification of 3-diazoavenalumic acid in avenalumic acid biosynthesis. This study deepened our understanding of the highly reducing type II polyketide synthase system as well as the diazotization-dependent deamination pathway for the production of avenalumic acid or p-coumaric acid.

6.
FEMS Yeast Res ; 232023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36898669

RESUMO

Genome ploidy of Zygosaccharomyces rouxii is an intriguing topic in the field of industrial yeast research. However, the evolutionary relationship between the genome of Z. rouxii and other Zygosaccharomyces species is complex and not completely understood. In this study, we determined the genome sequences of Z. rouxii NCYC 3042, also referred to as 'Z. pseudorouxii,' and Z. mellis CBS 736T. We also conducted comparative analysis of the yeast genomes of a total of 21 strains, including 17 strains of nine Zygosaccharomyces species. This comparative genomics revealed that 17 Zygosaccharomyces strains are classified into four groups consisting of nine genome types: (i) Z. rouxii, Z. mellis, Z. sapae, Z. siamensis, and 'Candida versatilis' t-1 belong to the group Rouxii sharing four related genome types (Rouxii-1 to Rouxii-4), (ii) Z. bailii, Z. parabailii, and Z. pseudobailii belong to the group Bailii sharing three related genome types (Bailii-1 to Bailii-3), (iii and iv) Z. bisporus and Z. kombuchaensis belong to the groups Bisporus and Kombuchaensis, respectively, which each have haploid genomes. The Zygosaccharomyces genome seems to have acquired complexity and diversity through evolutionary events such as interspecies hybridization, reciprocal translocation, and diploidization of these nine genome types.


Assuntos
Zygosaccharomyces , Filogenia , Zygosaccharomyces/genética , Saccharomyces cerevisiae , Evolução Biológica , Hibridização Genética
7.
J Bacteriol ; 204(9): e0018922, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36005811

RESUMO

AmBldD is a global transcriptional regulator that represses the transcription of several genes required for sporangium formation in Actinoplanes missouriensis. Here, we characterized one of the AmBldD regulons: AMIS_1980, encoding an ortholog of BldC, which is a transcriptional regulator involved in the morphological development of Streptomyces. We determined the transcriptional start point of the bldC ortholog by high-resolution S1 nuclease mapping and found an AmBldD box in its 5'-untranslated region. Reverse transcription-quantitative PCR analysis revealed that the transcription of bldC is activated during sporangium formation. A bldC null mutant (ΔbldC) strain formed normally shaped sporangia, but they exhibited defective sporangium dehiscence; under a dehiscence-inducing condition, the number of spores released from the sporangia of the ΔbldC strain was 2 orders of magnitude lower than that from the sporangia of the wild-type strain. RNA sequencing analysis indicated that BldC functions as a transcriptional activator of several developmental genes, including tcrA, which encodes a key transcriptional activator that regulates sporangium formation, sporangium dehiscence, and spore dormancy. Using electrophoretic mobility shift assay (EMSA), we showed that a recombinant BldC protein directly binds to upstream regions of at least 18 genes, the transcription of which is downregulated in the ΔbldC strain. Furthermore, using DNase I footprinting and EMSA, we demonstrated that BldC binds to the direct repeat sequences containing an AT-rich motif. Thus, BldC is a global regulator that activates the transcription of several genes, some of which are likely to be required for sporangium dehiscence. IMPORTANCE BldC is a global transcriptional regulator that acts as a "brake" in the morphological differentiation of Streptomyces. BldC-like proteins are widely distributed throughout eubacteria, but their orthologs have not been studied outside streptomycetes. Here, we revealed that the BldC ortholog in Actinoplanes missouriensis is essential for sporangium dehiscence and that its regulon is different from the BldC regulon in Streptomyces venezuelae, suggesting that BldC has evolved to play different roles in morphological differentiation between the two genera of filamentous actinomycetes.


Assuntos
Regulação Bacteriana da Expressão Gênica , Esporângios , Actinoplanes , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Desoxirribonuclease I/genética , Regiões não Traduzidas
8.
Chembiochem ; 23(7): e202100700, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35132756

RESUMO

During the biosynthesis of alazopeptin, a tripeptide composed of two molecules of 6-diazo-5-oxo-L-norleucine (DON) and one of alanine, the α/ß hydrolase AzpM synthesizes the DON-DON dipeptide using DON tethered to the carrier protein AzpF (DON-AzpF). However, whether AzpM catalyzes the condensation of DON-AzpF with DON or DON-AzpF remains unclear. Here, to distinguish between these two condensation possibilities, the reaction catalyzed by AzpM was examined in vitro using a DON analogue, azaserine (AZS). We found that AzpM catalyzed the condensation between AZS-AzpF and DON-AzpF, but not between AZS-AzpF and DON. Possible reaction intermediates, DON-DON-AzpF and AZS-AZS-AzpF, were also detected during AzpM-catalyzed dipeptide formation from DON-AzpF and AZS-AzpF, respectively. From these results, we concluded that AzpM catalyzed the condensation of the two molecules of DON-AzpF and subsequent hydrolysis to produce DON-DON. Thus, AzpM is an unprecedented α/ß hydrolase that catalyzes dipeptide synthesis from two molecules of a carrier protein-tethered amino acid.


Assuntos
Diazo-Oxo-Norleucina , Hidrolases , Proteínas de Transporte , Diazo-Oxo-Norleucina/metabolismo , Dipeptídeos/metabolismo , Hidrolases/metabolismo
9.
Chembiochem ; 23(3): e202100517, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34767291

RESUMO

Indolizidine alkaloids, which have versatile bioactivities, are produced by various organisms. Although the biosynthesis of some indolizidine alkaloids has been studied, the enzymatic machinery for their biosynthesis in Streptomyces remains elusive. Here, we report the identification and analysis of the biosynthetic gene cluster for iminimycin, an indolizidine alkaloid with a 6-5-3 tricyclic system containing an iminium cation from Streptomyces griseus. The gene cluster has 22 genes, including four genes encoding polyketide synthases (PKSs), which consist of eight modules in total. In vitro analysis of the first module revealed that its acyltransferase domain selects malonyl-CoA, although predicted to select methylmalonyl-CoA. Inactivation of seven tailoring enzyme-encoding genes and structural elucidation of four compounds accumulated in mutants provided important insights into iminimycin biosynthesis, although some of these compounds appeared to be shunt products. This study expands our knowledge of the biosynthetic machinery of indolizidine alkaloids and the enzymatic chemistry of PKS.


Assuntos
Alcaloides/biossíntese , Família Multigênica , Streptomyces griseus/química , Streptomyces griseus/genética , Alcaloides/química , Indolizidinas/química , Conformação Molecular , Streptomyces griseus/metabolismo
10.
Nat Chem Biol ; 16(7): 776-782, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32367018

RESUMO

In type II polyketide synthases (PKSs), the ketosynthase-chain length factor (KS-CLF) complex catalyzes polyketide chain elongation with the acyl carrier protein (ACP). Highly reducing type II PKSs, represented by IgaPKS, produce polyene structures instead of the well-known aromatic skeletons. Here, we report the crystal structures of the Iga11-Iga12 (KS-CLF) heterodimer and the covalently cross-linked Iga10=Iga11-Iga12 (ACP=KS-CLF) tripartite complex. The latter structure revealed the molecular basis of the interaction between Iga10 and Iga11-Iga12, which differs from that between the ACP and KS of Escherichia coli fatty acid synthase. Furthermore, the reaction pocket structure and site-directed mutagenesis revealed that the negative charge of Asp 113 of Iga11 prevents further condensation using a ß-ketoacyl product as a substrate, which distinguishes IgaPKS from typical type II PKSs. This work will facilitate the future rational design of PKSs.


Assuntos
Proteína de Transporte de Acila/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Ácido Graxo Sintases/química , Policetídeo Sintases/química , Policetídeos/química , Proteína de Transporte de Acila/genética , Proteína de Transporte de Acila/metabolismo , Biocatálise , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptomyces/enzimologia , Streptomyces/genética , Especificidade por Substrato
11.
Biosci Biotechnol Biochem ; 86(4): 552-556, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35142339

RESUMO

The surface structures of the sporangia produced by Actinoplanes missouriensis were analyzed at high resolution in air and liquid via atomic force microscopy. Results revealed a dynamic change in sporangium surface structure in response to the amount of moisture. Furthermore, the Young's modulus of the sporangium surface (1.95 ± 0.92 GPa) was calculated by analyzing the force-distance curves in air.

12.
Biosci Biotechnol Biochem ; 86(9): 1270-1275, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35767877

RESUMO

Terpenoids are the largest class of natural products and are derived from C5 isoprene units. Recent discoveries of modification enzymes in native isoprene units before cyclization or transfer reactions have revealed that C5 units with additional carbon atoms are also used to produce terpenoids. These reports indicate that the utilization of these modification enzymes is useful for the enzymatic production of non-natural terpenoids. In this study, we have attempted to produce methylgeranyl polyphenols, which are not observed in nature, by combining a geranyl pyrophosphate C6 methyltransferase, BezA, which was discovered from the benzastatin biosynthetic pathway, and the promiscuous prenyltransferase NphB, which catalyzes prenylation of various flavonoids. We successfully synthesized five methylgeranylated flavonoids from naringenin, apigenin, and genistein. This result demonstrates that BezA is a powerful tool for the synthesis of novel non-natural terpenoids.


Assuntos
Dimetilaliltranstransferase , Dimetilaliltranstransferase/metabolismo , Flavonoides , Metiltransferases , Fosfatos de Poli-Isoprenil , Terpenos
13.
Angew Chem Int Ed Engl ; 61(45): e202211728, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36115045

RESUMO

The diazo group is an important functional group that can confer biological activity to natural products owing to its high reactivity. Recent studies have revealed that diazo groups are synthesized from amino groups using nitrous acid in secondary metabolites of actinomycetes. However, genome database analysis indicated that there are still many diazo group-biosynthesizing enzymes for unknown biosynthetic pathways. Here, we discovered an avenalumic acid biosynthesis gene cluster in Streptomyces sp. RI-77 by genome mining of enzymes involved in diazo group formation. Through heterologous expression, the gene cluster was revealed to direct avenalumic acid (AVA) biosynthesis via 3-aminoavenalumic acid (3-AAA). In vitro enzyme assays showed that AvaA6 and AvaA7 catalyzed the diazotization of 3-AAA using nitrous acid and substitution of the diazo group for hydride to synthesize AVA, respectively. This study revealed an unprecedented pathway for amino group removal via diazotization.


Assuntos
Produtos Biológicos , Streptomyces , Ácido Nitroso/metabolismo , Streptomyces/metabolismo , Vias Biossintéticas/genética , Família Multigênica , Produtos Biológicos/metabolismo , Proteínas de Bactérias/metabolismo
14.
Angew Chem Int Ed Engl ; 61(1): e202111217, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34626048

RESUMO

Prenyl pyrophosphate methyltransferases enhance the structural diversity of terpenoids. However, the molecular basis of their catalytic mechanisms is poorly understood. In this study, using multiple strategies, we characterized a geranyl pyrophosphate (GPP) C6-methyltransferase, BezA. Biochemical analysis revealed that BezA requires Mg2+ and solely methylates GPP. The crystal structures of BezA and its complex with S-adenosyl homocysteine were solved at 2.10 and 2.56 Å, respectively. Further analyses using site-directed mutagenesis, molecular docking, molecular dynamics simulations, and quantum mechanics/molecular mechanics calculations revealed the molecular basis of the methylation reaction. Importantly, the function of E170 as a catalytic base to complete the methylation reaction was established. We also succeeded in switching the substrate specificity by introducing a W210A substitution, resulting in an unprecedented farnesyl pyrophosphate C6-methyltransferase.


Assuntos
Metiltransferases/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Sesquiterpenos/metabolismo , Biocatálise , Cristalografia por Raios X , Teoria da Densidade Funcional , Metiltransferases/química , Metiltransferases/genética , Modelos Moleculares , Estrutura Molecular , Fosfatos de Poli-Isoprenil/química , Sesquiterpenos/química , Streptomyces/enzimologia , Especificidade por Substrato
15.
Mol Microbiol ; 113(6): 1170-1188, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32052506

RESUMO

The rare actinomycete Actinoplanes missouriensis forms sporangia, which open up and release zoospores in response to water. Here, we report a genetic and functional analysis of four FliA-family sigma factors, FliA1, FliA2, FliA3 and FliA4. Transcription of fliA1, fliA2 and fliA3 was directly activated by the global transcriptional activator TcrA during sporangium formation and dehiscence, while fliA4 was almost always transcribed at low levels. Gene disruption analysis showed that (a) deletion of fliA2 reduced the zoospore swimming speed by half, (b) the fliA1-fliA2 double-deletion mutant formed abnormal sporangia in which mutant spores ectopically germinated and (c) deletion of fliA3 induced no phenotypic changes in the wild-type and mutant strains of fliA1 and/or fliA2. Comparative RNA-Seq analyses among the wild-type and gene deletion mutant strains showed probable targets of each FliA-family sigma factor, indicating that FliA1- and FliA2-dependent promoters are quite similar to each other, while the FliA3-dependent promoter is somewhat different. Gene complementation experiments also indicated that the FliA1 regulon overlaps with the FliA2 regulon. These results demonstrate that A. missouriensis has developed a complex transcriptional regulatory network involving multiple FliA-family sigma factors for the accomplishment of its characteristic reproduction process, including sporangium formation, spore dormancy and sporangium dehiscence.


Assuntos
Actinoplanes/genética , Actinoplanes/metabolismo , Proteínas de Bactérias/genética , Fator sigma/genética , Esporângios/metabolismo , Esporos Bacterianos/metabolismo , Actinoplanes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica/genética , Regiões Promotoras Genéticas/genética , Transcrição Gênica/genética
16.
Chembiochem ; 22(1): 203-211, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32885554

RESUMO

The filamentous fungus Aspergillus oryzae has 27 putative iterative type I polyketide synthase (PKS) gene clusters, but the secondary metabolites produced by them are mostly unknown. Here, we focused on eight clusters that were reported to be expressed at relatively high levels in a transcriptome analysis. By comparing metabolites between an octuple-deletion mutant of these eight PKS gene clusters and its parent strain, we found that A. oryzae produced 2,4'-dihydroxy-3'-methoxypropiophenone (1) and its precursor, 4'-hydroxy-3'-methoxypropiophenone (3) in a specific liquid medium. Furthermore, an iterative type I PKS (PpsB) encoded by AO090102000166 and an acetyl-CoA ligase (PpsA) encoded downstream from ppsB were shown to be essential for their biosynthesis. PpsC, encoded upstream from ppsB, was shown to have 3-binding activity (Kd =26.0±6.2 µM) and is suggested to be involved in the conversion of 3 to 1. This study deepens our understanding of cryptic secondary metabolism in A. oryzae.


Assuntos
Aspergillus oryzae/genética , Policetídeo Sintases/genética , Aspergillus oryzae/metabolismo , Estrutura Molecular , Policetídeo Sintases/metabolismo
17.
Microb Cell Fact ; 20(1): 228, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34949178

RESUMO

BACKGROUND: Bio-based aromatic compounds are of great interest to the industry, as commercial production of aromatic compounds depends exclusively on the unsustainable use of fossil resources or extraction from plant resources. γ-amino acid 3-amino-4-hydroxybenzoic acid (3,4-AHBA) serves as a precursor for thermostable bioplastics. RESULTS: Under aerobic conditions, a recombinant Corynebacterium glutamicum strain KT01 expressing griH and griI genes derived from Streptomyces griseus produced 3,4-AHBA with large amounts of amino acids as by-products. The specific productivity of 3,4-AHBA increased with decreasing levels of dissolved oxygen (DO) and was eightfold higher under oxygen limitation (DO = 0 ppm) than under aerobic conditions (DO ≥ 2.6 ppm). Metabolic profiles during 3,4-AHBA production were compared at three different DO levels (0, 2.6, and 5.3 ppm) using the DO-stat method. Results of the metabolome analysis revealed metabolic shifts in both the central metabolic pathway and amino acid metabolism at a DO of < 33% saturated oxygen. Based on this metabolome analysis, metabolic pathways were rationally designed for oxygen limitation. An ldh deletion mutant, with the loss of lactate dehydrogenase, exhibited 3.7-fold higher specific productivity of 3,4-AHBA at DO = 0 ppm as compared to the parent strain KT01 and produced 5.6 g/L 3,4-AHBA in a glucose fed-batch culture. CONCLUSIONS: Our results revealed changes in the metabolic state in response to DO concentration and provided insights into oxygen supply during fermentation and the rational design of metabolic pathways for improved production of related amino acids and their derivatives.


Assuntos
Aminobenzoatos/metabolismo , Corynebacterium glutamicum/metabolismo , Hidroxibenzoatos/metabolismo , Engenharia Metabólica/métodos , Oxigênio/metabolismo , Aminoácidos/metabolismo , Aminoácidos Acídicos/genética , Aminoácidos Acídicos/metabolismo , Proteínas de Bactérias/genética , Técnicas de Cultura Celular por Lotes , Corynebacterium glutamicum/genética , Fermentação , Glucose/metabolismo , L-Lactato Desidrogenase/genética , Redes e Vias Metabólicas , Metaboloma , Deleção de Sequência
18.
Biosci Biotechnol Biochem ; 85(9): 2065-2075, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34191007

RESUMO

During acetic acid fermentation, acetic acid bacteria face oxygen depletion stress caused by the vigorous oxidation of ethanol to acetic acid. However, the molecular mechanisms underlying the response to oxygen depletion stress remain largely unknown. Here, we focused on an oxygen-sensing FNR homolog, FnrG, in Komagataeibacter medellinensis. Comparative transcriptomic analysis between the wild-type and fnrG-disrupted strains revealed that FnrG upregulated 8 genes (fold change >3). Recombinant FnrG bound to a specific DNA sequence only when FnrG was reconstituted anaerobically. An operon consisting of acetate kinase and xylulose-5-phosphate/fructose-6-phosphate phosphoketolase genes was found to be an FnrG regulon involved in cell survival under oxygen-limiting conditions. Moreover, a strain that overexpressed these 2 genes accumulated more acetic acid than the wild-type strain harboring an empty vector. Thus, these 2 genes could be new targets for the molecular breeding of acetic acid bacteria with high acetic acid productivity.


Assuntos
Acetobacteraceae/metabolismo , Proteínas de Bactérias/metabolismo , Oxigênio/metabolismo , Acetato Quinase/genética , Ácido Acético/metabolismo , Acetobacteraceae/genética , Aldeído Liases/genética , Proteínas de Bactérias/genética , Celulose/metabolismo , Fermentação , Óperon , Transcriptoma
19.
Biosci Biotechnol Biochem ; 85(1): 148-153, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33577653

RESUMO

Ishigamide was isolated as a metabolite of a recombinant strain of Streptomyces sp. MSC090213JE08 and its unsaturated fatty acid moiety has been confirmed in vitro to be synthesized by a type II PKS. Biosynthesis of such a highly reduced polyketide by a type II PKS is worthy of note. However, absolute configuration of ishigamide remained unknown. (R)-Ishigamide was synthesized enantioselectively employing Stille coupling and Wittig reaction between three units, vinyl iodide, stannyldienal, and Wittig salt. Stereochemistry of natural ishigamide was determined to be R by chiral HPLC analysis comparing with the synthesized standard.


Assuntos
Policetídeos/química , Policetídeos/síntese química , Técnicas de Química Sintética , Oxirredução , Estereoisomerismo , Streptomyces/química
20.
J Ind Microbiol Biotechnol ; 48(9-10)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34453549

RESUMO

Nitroaromatic compounds are essential materials for chemical industry, but they are also potentially toxic environmental pollutants. Therefore, their sensitive detection and degradation are important concerns. The microbial degradation pathways of nitroaromatic compounds have been studied in detail, but their usefulness needs to be evaluated to understand their potential applications in bioremediation. Here, we developed a rapid and relatively sensitive assay system to evaluate the activities and substrate specificities of nitroaromatic dioxygenases involved in the oxidative biodegradation of nitroaromatic compounds. In this system, nitrous acid, which was released from the nitroaromatic compounds by the dioxygenases, was detected and quantified using the Saltzman reagent. Escherichia coli producing the 3-nitrobenzoic acid dioxygenase complex MnbAB from Comamonas sp. JS46 clearly showed the apparent substrate specificity of MnbAB as follows. MnbAB accepted not only 3-nitrobenzoic acid but also several other p- and m-nitrobenzoic acid derivatives as substrates, although it much preferred 3-nitrobenzoic acid to others. Furthermore, the presence of a hydroxy or an amino group at the ortho position of the nitro group decreased the activity of MnbAB. In addition, MnbAB accepted 2-(4-nitrophenyl)acetic acid as a substrate, which has one additional methylene group between the aromatic ring and the carboxy group of 3-nitrobenzoic acid. This is the first report about the detailed substrate specificity of MnbAB. Our system can be used for other nitroaromatic dioxygenases and contribute to their characterization.


Assuntos
Dioxigenases , Biodegradação Ambiental , Colorimetria , Dioxigenases/metabolismo , Indicadores e Reagentes , Nitrobenzoatos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa