Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 29(52): e202301586, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37311073

RESUMO

All-solid-state sodium batteries are attracting intensive attention, and chloride-based solid electrolytes are promising candidates for use in such batteries because of their high chemical stability and low Young's modulus. Here, we report new superionic conductors based on polyanion-added chloride-based materials. Na0.67 Zr(SO4 )0.33 Cl4 showed a high ionic conductivity of 1.6 mS cm-1 at room temperature. X-ray diffraction analysis indicated that the highly conducting materials are mainly a mixture of an amorphous phase and Na2 ZrCl6 . The conductivity might be dominated by the electronegativity of the central atom of the polyanion. Electrochemical measurements reveal that Na0.67 Zr(SO4 )0.33 Cl4 is a sodium ionic conductor and is suitable for use as a solid electrolyte in all-solid-state sodium batteries.

2.
Phys Chem Chem Phys ; 24(44): 27375-27379, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36331000

RESUMO

A single-phase all-solid-state battery was prepared from amorphous Na3V2(PO4)3 (NVP) powder, which was synthesized by mechanical milling of the crystalline NVP. It was found that the structure of the amorphous NVP was much different from that of the crystalline NVP from the FT-IR measurement. The charge-discharge curves of the half-cell using organic electrolyte were also much different from those in the case of crystalline NVP. By using amorphous NVP, a much higher ionic conductivity of the sintered pellet was observed compared with the case using crystalline NVP because of the high density of the pellet. The single-phase all-solid-state battery prepared from the amorphous NVP showed reasonable charge-discharge properties at room temperature.

3.
Phys Chem Chem Phys ; 23(16): 10130-10131, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33870395

RESUMO

Correction for 'Local structure of a highly concentrated NaClO4 aqueous solution-type electrolyte for sodium ion batteries' by Ryo Sakamoto et al., Phys. Chem. Chem. Phys., 2020, 22, 26452-26458, DOI: 10.1039/D0CP04376A.

4.
Phys Chem Chem Phys ; 22(45): 26452-26458, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33180893

RESUMO

Aqueous Na-ion batteries with highly concentrated NaClO4 aq. electrolytes are drawing attention as candidates for large-scale rechargeable batteries with a high safety level. However, the detailed mechanism by which the potential window in 17 m NaClO4 aq. electrolyte was expanded remains unclear. Therefore, we investigated the local structure around a Na+ ion or a ClO4- ion using X-ray diffraction combined with empirical potential structure refinement (EPSR) modelling and Raman spectroscopy. The results showed that in 17 m NaClO4 aq. electrolyte, most of the water molecules were coordinated to Na+ ions and few free water molecules were present. The 17 m NaClO4 aq. electrolyte could be interpreted as widening the potential window because almost all water molecules participated in hydration of the Na+ ions.

5.
Chem Rec ; 19(4): 811-816, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30933404

RESUMO

We study the Na-ion battery characteristics of SnS as a negative electrode by first-principles calculations. From energy analyses, we clarify the discharge reaction process of the Na/SnS half-cell system. We show a phase diagram of Na-Sn-S ternary systems by constructing convex-hull curves, and show a possible reaction route considering intermediate products in discharge reactions. Voltage-capacity curves are calculated based on the Na-SnS reaction path that is obtained from the ternary phase diagram. It is found that the conversion reactions and subsequently the alloying reactions proceed in the SnS electrode, contributing to its high capacity compared with the metallic Sn electrode, in which only the alloying reactions progresses stepwise. To verify the calculated reaction process, x-ray absorption spectra (XAS) are calculated and compared with experimental XAS at S K-edge, showing meaningful XAS changes associated with Na2 S and SnS in discharged and charged states, respectively.

6.
J Am Chem Soc ; 139(49): 17987-17993, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29144128

RESUMO

The development of an unconventional synthesis method has a large potential to drastically advance materials science. In this research, a new synthesis method based on a solid-state electrochemical reaction was demonstrated, which can be made available for intercalation and ion substitution. It was referred to as proton-driven ion introduction (PDII). The protons generated by the electrolytic dissociation of hydrogen drive other monovalent cations along a high electric field in the solid state. Utilizing this mechanism, Li+, Na+, K+, Cu+, and Ag+ were intercalated into a layered TaS2 single crystal while maintaining high crystallinity. This liquid-free process of ion introduction allows the application of high voltage around several kilovolts to the sample. Such a high electric field strongly accelerates ion substitution. Actually, compared to conventional solid-state reaction, PDII introduced 15 times the amount of K into Na super ionic conductor (NASICON)-structured Na3-xKxV2(PO4)3. The obtained materials exhibited a thermodynamically metastable phase, which has not been reported so far. This concept and idea for ion introduction is expected to form new functional compounds and/or phases.

7.
Inorg Chem ; 56(10): 5918-5929, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28462996

RESUMO

Sodium-ion batteries are widely pursued as an economic alternative to lithium-ion battery technology, where Fe- and Mn-based compounds are particularly attractive owing to their elemental abundance. Pursuing phosphate-based polyanionic chemistry, recently solid-state prepared NaFe(PO3)3 metaphosphate was unveiled as a novel potential sodium insertion material, although it was found to be electrochemically inactive. In the current work, employing energy-savvy solution combustion synthesis, NaFe2+(PO3)3 was produced from low-cost Fe3+ precursors. Owing to the formation of nanoscale carbon-coated product, electrochemical activity was enabled in NaFe(PO3)3 for the first time. In congruence with the first principles density functional theory (DFT) calculations, an Fe3+/Fe2+ redox activity centered at 2.8 V (vs Na/Na+) was observed. Further, the solid-solution metaphosphate family Na(Fe1-xMnx)(PO3)3 (x = 0-1) was prepared for the first time. Their structure and distribution of transition metals (TM = Fe/Mn) was analyzed with synchrotron diffraction, X-ray photoelectron spectroscopy, and Mössbauer spectroscopy. Synergizing experimental and computational tools, NaFe(PO3)3 metaphosphate is presented as an electrochemically active sodium insertion host material.

8.
RSC Adv ; 13(32): 22070-22078, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37483666

RESUMO

A metal-organic framework (MOF) having a redox active 1,4,5,8-naphthalenetetracarboxdiimide (NDI) derivative in its organic linker shows excellent rate performance as an electrode material for aqueous batteries thanks to its large pores. Among aqueous electrolytes examined, K+-based ones exhibit the highest rate performance, which is caused by the highest mobility of the smallest hydrated K+ ion not only in the aqueous electrolyte but also in the electrode. Since the use of a counter electrode with insufficiently small pores for the full-cell configuration offsets this merit, our study may lead to a conclusion that the maximum rate performance for aqueous batteries will be accomplished only through further elaboration of both electrode materials with sufficiently large pores, in which hydrated ions can travel equally fast as those in the electrolyte.

9.
ACS Appl Mater Interfaces ; 15(30): 36076-36085, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37466273

RESUMO

Silicon has the potential to improve lithium-ion battery (LIB) performance substantially by replacing graphite as an anode. The sustainability of such a transformation, however, depends on the source of silicon and the nature of the manufacturing process. Today's silicon industry still overwhelmingly depends on the energy-intensive, high-temperature carbothermal reduction of silica─a process that adversely impacts the environment. Rather than use conventional thermoreduction alone to break Si-O bonds, we report the efficient conversion of SiO2 directly to Mg2Si by a microwave-induced Mg plasma within 2.5 min at merely 200 W under vacuum. The underlying mechanism is proposed, wherein electrons with enhanced kinetics function readily as the reductant while the "bombardment" from Mg cations and electrons promotes the fast nucleation of Mg2Si. The 3D nanoporous (NP) Si is then fabricated by a facile thermal dealloying step. The resulting hierarchical NP Si anodes deliver stable, extended cycling with excellent rate capability in Li-ion half-cells, with capacities several times greater than graphite. The microwave-induced metal plasma (MIMP) concept can be applied just as efficiently to the synthesis of Mg2Si from Si, and the chemistry should be extendable to the reduction of multiple metal(loid) oxides via their respective Mg alloys.

10.
RSC Adv ; 12(17): 10749-10754, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35424984

RESUMO

All-solid-state Li batteries have attracted significant attention because of their high energy density and high level of safety. In a solid-state Li-ion battery, the electrodes contain a solid electrolyte that does not contribute directly to the capacity. Therefore, a battery that does not require a solid electrolyte in its electrode mixture should exhibit a higher energy density. In this study, a MgH2 electrode was used as the negative electrode material without a solid electrolyte in its mixture. The resultant battery demonstrated excellent performance because of the formation of an ionic conduction path based on LiH in the electrode mixture. LiH and Mg clearly formed upon lithiation and returned to MgH2 upon delithiation as revealed by TEM-EELS analysis. This mechanism of in situ electrolyte formation enables the development of a solid-state battery with a high energy density.

11.
Chem Commun (Camb) ; 57(21): 2605-2608, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33621300

RESUMO

The present work proposes a new approach to increasing the capacity of all-solid-state batteries, based on the in situ formation of an electrolyte in a Mg(BH4)2 electrode. Charge/discharge assessments of the electrode composed of Mg(BH4)2 and acetylene black showed an initial reversible capacity of 563 mA h g-1-Mg(BH4)2.

12.
Chem Commun (Camb) ; 57(95): 12840-12843, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34787135

RESUMO

A carbonophosphate compound of Li2.72Na0.31MnPO4CO3 was synthesized via ion exchange. The initial discharge capacity of Li2.72Na0.31MnPO4CO3 in 15 molal (or 15 m) LiTFSI was 110 mA h g-1 at 2 mA cm-2 (∼0.5C). Due to the decomposition of Li2.72Na0.31MnPO4CO3, the capacity retention degraded to 64% after 100 cycles.

13.
RSC Adv ; 11(14): 7886-7895, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35423334

RESUMO

LiNi0.5Mn0.3Co0.2O2 can achieve high energy density due to its merits of high theoretical capacity and a relatively high operating voltage, but the LiNi0.5Mn0.3Co0.2O2 battery suffers from capacity decay because of the unstable solid electrolyte interface on the cathode. Herein, we investigate the application of a fluorinated electrolyte composed of fluoroethylene carbonate (FEC) as a cosolvent and lithium difluorophosphate (LiPO2F2) as a salt-type additive extending the life span of the LiNi0.5Mn0.3Co0.2O2 cathode. LiNi0.5Mn0.3Co0.2O2 can achieve and maintain a capacity of 157.7 mA h g-1 over 200 cycles at a 1C rate between 3.0 and 4.4 V, as well as a reversible capacity of 132.7 mA h g-1 even at the high rate of 10C. The enhanced performance can be ascribed to the formation of the robust and protective fluorinated organic-inorganic film on the cathode, which derives from the FEC cosolvent and LiPO2F2 additive and ensures facile lithium-ion transport. The synergistic effect of the cosolvent and additive to boost the electrochemical performance of LiNi0.5Mn0.3Co0.2O2 cathode will pave a new pathway for high-voltage cathode materials.

14.
RSC Adv ; 11(20): 11943-11951, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35423739

RESUMO

Gel polymer electrolytes (GPEs) have attracted ever-increasing attention in Li-ion batteries, due to their great thermal stability and excellent electrochemical performance. Here, a flexible poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-based GPE doped with an appropriate proportion of the PEO and SiO2 is developed through a universal immersion precipitation method. This porous PVDF-HFP-PEO-SiO2 GPE with high ionic conductivity and lithium-ion transference number (t Li+ ) can enhance the electrochemical performance of LiFePO4 cells, leading to superior rate capability and excellent cycling stability. Moreover, the PVDF-HFP-PEO-SiO2 GPE effectively inhibits the lithium dendrite growth, thereby improving the safety of Li-ion batteries. In view of the simplicity in using the gel polymer electrolyte, it is believed that this novel GPE can be used as a potential candidate for high-performance Li-ion batteries.

15.
Chem Commun (Camb) ; 56(58): 8107-8110, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32555815

RESUMO

We experimentally and computationally investigated the Ca substitution effect on the electrochemical performance of P3-NaxCoO2. The cycle performance of Ca-substituted NaxCa0.04CoO2 was effectively improved due to its better crystallinity retention after charging. Our DFT calculations suggested that the presence of Ca2+ ions in Na sites kinetically mitigates phase transition.

16.
Sci Rep ; 10(1): 3278, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32094478

RESUMO

The carbonophosphate Na3FePO4CO3 was synthesized by the mechanical ball milling method for the first time. The composition of the obtained sample with a higher amount of Fe2+ was Na2.66Fe2+0.66Fe3+0.34PO4CO3 as confirmed by Mössbauer analysis, owing to the good airtight properties of this method. The obtained samples in an organic electrolyte delivered an initial discharge capacity of 124 mAh/g at room temperature, and a larger discharge capacity of 159 mAh/g (1.66 Na+/mole) at 60 °C. With 17 m NaClO4 aqueous electrolyte, a discharge capacity of 161 mAh/g (1.69 Na+/mole) was delivered because of the high ionic conductivity of the concentrated aqueous electrolyte. During the charge-discharge process, the formation of Fe4+ after charging up to 4.5 V and the return of Fe2+ after discharging down to 1.5 V were detected by ex-situ X-ray absorption near edge structure (XANES) analysis.

17.
J Nanosci Nanotechnol ; 8(2): 591-4, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18464375

RESUMO

Nanosized crystalline Fe3O4 (with an average particle size of 16 nm) was successfully synthesized on a carbon matrix surface. The prepared sample was heat-treated in the temperature range 300 degrees C - 750 degrees C to remove residual impurities and to obtain a final product with a 77:23 ratio between magnetite and the carbon support. The sample was subjected to physicochemical and electrochemical tests. The purity of the phase and the particles size was determined by X-ray diffraction analysis and confirmed by field emission scanning electron micrographs. The specific surface area of the sample measured by the B.E.T method was 120 m2 g(-1). A series of electrochemical tests including EIS, CV and long-term constant current cycling have been performed. The obtained reversible capacity within 15 cycles was in the range 400-550 mA h x g(-1). The electrochemical behavior of the test sample and its possible practical use as an anode material in lithium secondary batteries are discussed.

18.
Chem Commun (Camb) ; 54(25): 3178-3181, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29528352

RESUMO

We report a battery made from a single material using Li1.5Cr0.5Ti1.5(PO4)3 as the anode, cathode and electrolyte. A high rate capability at room temperature and very low-temperature operation (233 K) were possible as a result of the superior ionic conductivity and low interfacial resistance obtained from the single-phase cell design.

19.
Sci Rep ; 8(1): 17199, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30464215

RESUMO

Sodium ion batteries meet the demand for large-scale energy storage, such as in electric vehicles, due to the material abundance of sodium. In this report, nanotube-type Na2V3O7 is proposed as a cathode material because of its fast sodium diffusivity, an important requirement for sodium ion batteries, through the investigation of ~4300 candidates via a high-throughput computation. High-rate performance was confirmed, showing ~65% capacity retention at a current density of 10C at room temperature, despite the large particle size of >5 µm. A good cycle performance of ca. 94% in capacity retention after 50 cycles was obtained owing to a small volumetric change of <0.4%.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa