Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Glob Chang Biol ; 28(17): 5062-5085, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35642454

RESUMO

Although it is an integral part of global change, most of the research addressing the effects of climate change on forests have overlooked the role of environmental pollution. Similarly, most studies investigating the effects of air pollutants on forests have generally neglected the impacts of climate change. We review the current knowledge on combined air pollution and climate change effects on global forest ecosystems and identify several key research priorities as a roadmap for the future. Specifically, we recommend (1) the establishment of much denser array of monitoring sites, particularly in the South Hemisphere; (2) further integration of ground and satellite monitoring; (3) generation of flux-based standards and critical levels taking into account the sensitivity of dominant forest tree species; (4) long-term monitoring of N, S, P cycles and base cations deposition together at global scale; (5) intensification of experimental studies, addressing the combined effects of different abiotic factors on forests by assuring a better representation of taxonomic and functional diversity across the ~73,000 tree species on Earth; (6) more experimental focus on phenomics and genomics; (7) improved knowledge on key processes regulating the dynamics of radionuclides in forest systems; and (8) development of models integrating air pollution and climate change data from long-term monitoring programs.


Assuntos
Poluição do Ar , Mudança Climática , Poluição do Ar/efeitos adversos , Ecossistema , Florestas , Árvores
2.
J Exp Bot ; 67(14): 4367-78, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27255929

RESUMO

Relative air humidity (RH) is expected to increase in northern Europe due to climate change. Increasing RH reduces the difference of water vapour pressure deficit (VPD) between the leaf and the atmosphere, and affects the gas exchange of plants. Little is known about the effects of decreased VPD on plant metabolism, especially under field conditions. This study was conducted to determine the effects of artificially decreased VPD on silver birch (Betula pendula Roth.) and hybrid aspen (Populus tremula L.×P. tremuloides Michx.) foliar metabolite and nutrient profiles in a unique free air humidity manipulation (FAHM) field experiment during the fourth season of humidity manipulation, in 2011. Long-term exposure to decreased VPD modified nutrient homeostasis in tree leaves, as demonstrated by a lower N concentration and N:P ratio in aspen leaves, and higher Na concentration and lower K:Na ratio in the leaves of both species in decreased VPD than in ambient VPD. Decreased VPD caused a shift in foliar metabolite profiles of both species, affecting primary and secondary metabolites. Metabolic adjustment to decreased VPD included elevated levels of starch and heptulose sugars, sorbitol, hemiterpenoid and phenolic glycosides, and α-tocopherol. High levels of carbon reserves, phenolic compounds, and antioxidants under decreased VPD may modify plant resistance to environmental stresses emerging under changing climate.


Assuntos
Betula/metabolismo , Folhas de Planta/metabolismo , Populus/metabolismo , Antioxidantes/análise , Antioxidantes/metabolismo , Glicosídeos/análise , Glicosídeos/metabolismo , Umidade , Fenóis/análise , Fenóis/metabolismo , Folhas de Planta/química , Sorbitol/análise , Sorbitol/metabolismo , Amido/análise , Amido/metabolismo , alfa-Tocoferol/análise , alfa-Tocoferol/metabolismo
3.
J Exp Bot ; 67(14): 4353-65, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27259554

RESUMO

Air humidity indicated as vapour pressure deficit (VPD) is directly related to transpiration and stomatal function of plants. We studied the effects of VPD and nitrogen (N) supply on leaf metabolites, plant growth, and mineral nutrition with young micropropagated silver birches (Betula pendula Roth.) in a growth chamber experiment. Plants that were grown under low VPD for 26 d had higher biomass, larger stem diameter, more leaves, fewer fallen leaves, and larger total leaf area than plants that were grown under high VPD. Initially, low VPD increased height growth rate and stomatal conductance; however, the effect was transient and the differences between low and high VPD plants became smaller with time. Metabolic adjustment to low VPD reflected N deficiency. The concentrations of N, iron, chlorophyll, amino acids, and soluble carbohydrates were lower and the levels of starch, quercetin glycosides, and raffinose were higher in the leaves that had developed under low VPD compared with high VPD. Additional N supply did not fully overcome the negative effect of low VPD on nutrient status but it diminished the effects of low VPD on leaf metabolism. Thus, with high N supply, the glutamine to glutamate ratio and starch production under low VPD became comparable with the levels under high VPD. The present study demonstrates that low VPD affects carbon and nutrient homeostasis and modifies N allocation of plants.


Assuntos
Betula/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Betula/crescimento & desenvolvimento , Metabolismo dos Carboidratos , Umidade , Estômatos de Plantas/metabolismo , Transpiração Vegetal/fisiologia
5.
Tree Physiol ; 43(1): 16-30, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36049078

RESUMO

Continuous light (CL) is available throughout the polar day for plants in the Arctic during the growing season, whereas provenances of the same species experience a very different environment with non-CL (NCL) just a few latitudes to the south. Both provenances need to acclimate to climate warming, yet we lack comprehensive understanding of how their growth, photosynthesis and leaf traits differ. Further, the provenances presumably have morphological and physiological adaptations to their native environments and therefore differ in response to photoperiod. We tested the height growth, leaf longevity, biomass accumulation, biomass allocation and rates of gas exchange of northern (67°N) and southern (61°N) Finnish silver birch (Betula pendula Roth) origins in CL- and NCL-treatments in a 4-month chamber experiment. Irrespective of photoperiod, 67°N had higher area-based photosynthetic rate (Anet), stomatal conductance (gs) and relative height growth rate (RGR), but lower stomatal density and fewer branches and leaves than 61°N. Photoperiod affected height growth cessation, biomass and photosynthetic traits, whereas leaf longevity and many leaf functional traits remained unchanged. In CL, both provenances had lower gs, higher RGR, increased shoot:root ratio and increased sink sizes (more branching, more leaves, increased total plant dry weight) compared with NCL. In NCL, 67°N ceased height growth earlier than in CL, which altered biomass accumulation and distribution patterns. Northern conditions impose challenges for plant growth and physiology. Whether a provenance inhabits and is adapted to an area with or without CL can also affect its response to the changing climate. Northern birches may have adapted to CL and the short growing season with a 'polar day syndrome' of traits, including relatively high gas exchange rates with low leaf biomass and growth traits that are mainly limited by the environment and the earlier growth cessation (to avoid frost damage).


Assuntos
Betula , Fotoperíodo , Finlândia , Fotossíntese , Folhas de Planta/fisiologia
6.
Tree Physiol ; 41(6): 974-991, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171495

RESUMO

Growth of northern trees is limited by short growing seasons. In multi-year trials, northern trees usually grow less than southern ones but can have higher gas exchange, whereas differences in biomass allocation and its relation to photosynthesis are less known. We characterized silver birch (Betula pendula Roth) provenances from southern (latitude 61°) and northern (latitude 67°) Finland in uniform chamber conditions. In a time-series experiment, we measured traits related to growth, biomass allocation and photosynthesis, and determined gas exchange responses to temperature and light. We found provenance differences in photosynthetic capacity and growth. The northern provenance allocated relatively more to roots, having a higher root mass fraction and lower shoot:root ratio than the southern provenance. On the other hand, the northern provenance had fewer leaves and lower total leaf dry weight (DW) than the southern provenance. The northern provenance attained higher rates of net photosynthesis (Anet) and higher stomatal conductance (gs) in all measured temperatures and higher photosynthesis at the optimum temperature (Aopt) than the southern provenance, but there was no difference in the optimum temperature of photosynthesis (Topt, 18.3 °C for the southern provenance vs 18.9 °C for the northern one). Photosynthetic light response curves showed no between-provenance differences. In a time-series, the northern provenance had higher Anet than the southern provenance, but gs was similar. The northern provenance had higher maximum quantum yield of photosystem II photochemistry (Fv/Fm) than the southern provenance. There were no differences between provenances in height, total plant DW, shoot DW, root DW or shoot mass fraction. Our results suggest that the provenances occupy a common thermal niche, or can at least relatively quickly acclimate to a common growth temperature. Thus, carbon assimilation of these northern trees may not be significantly affected by rising temperatures alone. In an equal photoperiod and optimal conditions, we found different one-season biomass accumulation strategies: southern trees grow with more leaves, while northern trees reach similar total assimilation (total DW, height) with more efficient photosynthetic capacity per leaf area (higher gas exchange, higher Fv/Fm) and relatively more investment in the below-ground fraction of the plant.


Assuntos
Betula , Fotossíntese , Finlândia , Folhas de Planta , Árvores
7.
Front Plant Sci ; 12: 746165, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899775

RESUMO

Plant secondary metabolites have many important functions; they also determine the productivity and resilience of trees under climate change. The effects of environmental factors on secondary metabolites are much better understood in above-ground than in below-ground part of the tree. Competition is a crucial biotic stress factor, but little is known about the interaction effect of climate and competition on the secondary chemistry of trees. Moreover, competition effect is usually overlooked when analyzing the sources of variation in the secondary chemistry. Our aim was to clarify the effects of competitive status, within-crown light environment, and climate on the secondary chemistry of silver birch (Betula pendula Roth). We sampled leaves (from upper and lower crown) and fine roots from competitively dominant and suppressed B. pendula trees in plantations along a latitudinal gradient (56-67° N) in Fennoscandia, with mean annual temperature (MAT) range: -1 to 8°C. Secondary metabolites in leaves (SML) and fine roots (SMFR) were determined with an HPLC-qTOF mass spectrometer. We found that SML content increased significantly with MAT. The effect of competitive stress on SML strengthened in colder climates (MAT<4°C). Competition and shade initiated a few similar responses in SML. SMFR varied less with MAT. Suppressed trees allocated relatively more resources to SML in warmer climates and to SMFR in colder ones. Our study revealed that the content and profile of secondary metabolites (mostly phenolic defense compounds and growth regulators) in leaves of B. pendula varied with climate and reflected the trees' defense requirements against herbivory, exposure to irradiance, and competitive status (resource supply). The metabolic profile of fine roots reflected, besides defense requirements, also different below-ground competition strategies in warmer and colder climates. An increase in carbon assimilation to secondary compounds can be expected at northern latitudes due to climate change.

8.
Photosynth Res ; 104(1): 61-74, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20407831

RESUMO

Plants are exposed to increasing levels of tropospheric ozone concentrations. This pollutant penetrates in leaves through stomata and quickly reacts inside leaves, thus making plants valuable ozone sinks, but at the same time triggers oxidation processes which lead to leaf injuries. To counteract these negative effects, plants produce an array of antioxidants which react with ozone and reactive molecules which ozone generates in the leaf tissues. In this study, we measured the effect of an ozone concentration which is likely to be attained in many areas of the world in the near future (80 ppb) on leaves of the vertical profile of the widespread agroforestry species Populus nigra. Changes in (1) physiological parameters (photosynthesis and stomatal conductance), (2) ozone uptake, (3) emission of volatile organic compounds (VOCs, i.e. isoprene, methanol and other oxygenated compounds), (4) concentration of antioxidant surface compounds, and (5) concentration of phenolic compounds were assessed. The aim was to assess whether the defensive pathways leading to isoprenoids and phenolics formation were induced when a moderate and chronic increment of ozone is not able to damage photosynthesis. No visual injuries and minor changes in physiology and ozone uptake were observed. The emission of isoprene and oxygenated six-carbon (C6) volatiles were inhibited by ozone, whereas methanol emission was increased, especially in developing leaves. We interpret these results as suggesting an ontogenetic shift in ozone-treated leaves, leading to a slower development and a faster senescence. Most surface and phenolic compounds showed a declining trend in concentration from the youngest to the fully expanded leaves. Ozone reduced the concentrations of chlorogenic acid derivatives at the leaf surface, whereas in total leaf extracts a metabolic shift towards few phenolics with higher antioxidant capacity was observed.


Assuntos
Ozônio/farmacologia , Folhas de Planta/metabolismo , Populus/metabolismo , Antioxidantes/metabolismo , Antioxidantes/fisiologia , Butadienos/metabolismo , Dióxido de Carbono/metabolismo , Hemiterpenos/metabolismo , Metanol/metabolismo , Pentanos/metabolismo , Fotossíntese/efeitos dos fármacos , Fotossíntese/fisiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Transpiração Vegetal/efeitos dos fármacos , Transpiração Vegetal/fisiologia , Populus/efeitos dos fármacos , Populus/fisiologia
9.
Plant Cell Environ ; 33(6): 1016-28, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20132521

RESUMO

Long-term effects of elevated CO(2) and O(3) concentrations on gene expression in silver birch (Betula pendula Roth) leaves were studied during the end of the growing season. Two birch genotypes, clones 4 and 80, with different ozone growth responses, were exposed to 2x ambient CO(2) and/or O(3) in open-top chambers (OTCs). Microarray analyses were performed after 2 years of exposure, and the transcriptional profiles were compared to key physiological characteristics during leaf senescence. There were genotypic differences in the responses to CO(2) and O(3). Clone 80 exhibited greater transcriptional response and capacity to alter metabolism, resulting in better stress tolerance. The gene expression patterns of birch leaves indicated contrasting responses of senescence-related genes to elevated CO(2) and O(3). Elevated CO(2) delayed leaf senescence and reduced associated transcriptional changes, whereas elevated O(3) advanced leaf senescence because of increased oxidative stress. The combined treatment demonstrated that elevated CO(2) only temporarily alleviated the negative effects of O(3). Gene expression data alone were insufficient to explain the O(3) response in birch, and additional physiological and biochemical data were required to understand the true O(3) sensitivity of these clones.


Assuntos
Betula/genética , Dióxido de Carbono/farmacologia , Senescência Celular/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ozônio/farmacologia , Folhas de Planta/genética , Atmosfera/química , Betula/citologia , Betula/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Células Clonais , Genes de Plantas/genética , Genótipo , Hibridização de Ácido Nucleico/genética , Filogenia , Folhas de Planta/citologia , Folhas de Planta/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Fatores de Tempo
10.
J Exp Bot ; 61(6): 1583-95, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20181662

RESUMO

Volatile organic compounds (VOCs) are expected to have an important role in plant adaptation to high temperatures. The impacts of increasing night-time temperature on daytime terpenoid emissions and related gene expression in silver birch (Betula pendula) and European aspen (Populus tremula) clones were studied. The plants were grown under five different night-time temperatures (6, 10, 14, 18, and 22 degrees C) while daytime temperature was kept at a constant 22 degrees C. VOC emissions were collected during the daytime and analysed by gas chromatography-mass spectrometry (GC-MS). In birch, emissions per leaf area of the C11 homoterpene 4,8-dimethy1-nona-1,3,7-triene (DMNT) and several sesquiterpenes were consistently increased with increasing night-time temperature. Total sesquiterpene (SQT) emissions showed an increase at higher temperatures. In aspen, emissions of DMNT and beta-ocimene increased from 6 degrees C to 14 degrees C, while several other monoterpenes and the SQTs (Z,E)-alpha-farnesene and (E,E)-alpha-farnesene increased up to 18 degrees C. Total monoterpene and sesquiterpene emission peaked at 18 degrees C, whereas isoprene emissions decreased at 22 degrees C. Leaf area increased across the temperature range of 6-22 degrees C by 32% in birch and by 59% in aspen. Specific leaf area (SLA) was also increased in both species. The genetic regulation of VOC emissions seems to be very complex, as indicated by several inverse relationships between emission profiles and expression of several regulatory genes (DXR, DXS, and IPP). The study indicates that increasing night temperature may strongly affect the quantity and quality of daytime VOC emissions of northern deciduous trees.


Assuntos
Betula/metabolismo , Populus/metabolismo , Temperatura , Terpenos/metabolismo , Alcenos/metabolismo , Betula/genética , Butadienos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Hemiterpenos/metabolismo , Monoterpenos/metabolismo , Pentanos/metabolismo , Reação em Cadeia da Polimerase , Populus/genética , Sesquiterpenos/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Volatilização
11.
Physiol Plant ; 138(2): 123-33, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20002328

RESUMO

When plants are damaged by herbivorous insects they emit a blend of volatile organic compounds (VOCs) which include a range or terpenoids and green leaf volatiles (GLVs) formed via different metabolic pathways. The precise timing of these emissions upon the onset of herbivore feeding has not been fully elucidated, and the information that is available has been mainly obtained through laboratory based studies. We investigated emissions of VOCs from Populus tremula L. xP. tremuloides Michx. during the first 20 h of feeding by Epirrita autumnata (autumnal moth) larvae in a field site. The study was conducted using Proton Transfer Reaction-Mass Spectrometry (PTR-MS) to measure emissions online, with samples collected for subsequent analysis by complementary gas chromatography-mass spectrometry for purposes of compound identification. GLV emission peaks occurred sporadically from the outset, indicating herbivore activity, while terpene emissions were induced within 16 h. We present data detailing the patterns of monoterpene (MT), GLV and sesquiterpene (SQT) emissions during the early stages of herbivore feeding showing diurnal MT and SQT emission that is correlated more with temperature than light. Peculiarities in the timing of SQT emissions prompted us to conduct a thorough characterization of the equipment used to collect VOCs and thus corroborate the accuracy of results. A laboratory based analysis of the throughput of known GLV, MT and SQT standards at different temperatures was made with PTR-MS. Enclosure temperatures of 12, 20 and 25 degrees C had little influence on the response time for dynamic measurements of a GLV or MT. However, there was a clear effect on SQT measurements. Elucidation of emission patterns in real-time is dependent upon the dynamics of cuvettes at different temperatures.


Assuntos
Folhas de Planta/química , Populus/química , Compostos Orgânicos Voláteis/análise , Animais , Comportamento Alimentar , Cromatografia Gasosa-Espectrometria de Massas , Larva/fisiologia , Monoterpenos/análise , Mariposas , Sesquiterpenos/análise , Temperatura
12.
J Chem Ecol ; 36(10): 1068-75, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20838885

RESUMO

Deciduous trees remobilize the nitrogen in leaves during the process of autumn coloration, thus providing a high quality food source for aphids preparing to lay over-wintering eggs. It has been suggested that aphids may use volatile organic compounds (VOCs) to: (a) select leaves where nutrient remobilization has started and induced defenses are reduced; and (b) detect the time of leaf abscission. We analyzed VOCs emitted by the foliage of Betula pendula Roth. during autumn coloration and from leaf litter just after leaf fall. We tested the hypothesis that costly, photosynthesis-related terpenes and other herbivore-induced VOCs related to attraction of aphid parasitoids and predators are reduced during the coloration process. We also investigated if the VOC emission profile of abscising leaves is different from that of early stage yellowing leaves. Enemy-luring compounds (E)-ß-ocimene, linalool, and (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) were emitted only from the green foliage. Methyl salicylate (MeSa), known to recruit predatory bugs and attract migrant aphids, was emitted until the first stage of color change. Cis-3-hexenol, an indicator of cellular disintegration, became dominant in the emissions from abscising leaves and from fresh leaf litter. We discuss the ecological significance of the observed changes in birch leaf VOC profiles during the process of autumn senescence.


Assuntos
Afídeos/fisiologia , Betula/fisiologia , Folhas de Planta/química , Compostos Orgânicos Voláteis/metabolismo , Monoterpenos Acíclicos , Alcenos/metabolismo , Animais , Ecossistema , Monoterpenos/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Salicilatos/metabolismo , Estações do Ano , Terpenos/metabolismo , Fatores de Tempo
13.
J Sci Food Agric ; 90(3): 418-23, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20355062

RESUMO

BACKGROUND: Phenolic compounds have recently received considerable attention for their ability to protect plant and human cells from oxidative stress-induced damage. Red clover (Trifolium pratense L.) is a rich source of isoflavonoids with multiple potential protective functions. The aim of this study was to identify and characterise phenolic compounds in red clover roots by high-performance liquid chromatography and mass spectrometry and to study the effects of stress factors and growth stage on root phenolics. RESULTS: A total of 28 phenolic compounds were tentatively identified in red clover roots. The most abundant phenolics in pot-grown roots were formononetin glycoside malonate (G-M) (1.51-4.26 mg g(-1)), formononetin (2.21-3.57 mg g(-1)) and biochanin A (1.73-2.17 mg g(-1)), whereas field-grown roots were rich in formononetin-G-M (3.90-4.27 mg g(-1)), maackiain-G-M (2.35-3.02 mg g(-1)) and pseudobaptigenin-G-M (1.80-2.58 mg g(-1)). Concentrations were affected by the growth stage. Ozone exposure slightly affected the total phenolic content in roots and also had minor effects on individual compounds. CONCLUSION: Elevated ozone, cultivation regime and growth stage affected the levels of phenolics in red clover roots, suggesting sensitivity of root phenolics to biotic and abiotic stress conditions. The high levels of phenolics found in roots even in late autumn may be utilised in many applications.


Assuntos
Isoflavonas/metabolismo , Ozônio , Fenóis/metabolismo , Raízes de Plantas/metabolismo , Estresse Fisiológico/fisiologia , Trifolium/metabolismo , Adaptação Fisiológica , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Fenóis/análise , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Trifolium/química , Trifolium/crescimento & desenvolvimento
14.
Tree Physiol ; 40(2): 198-214, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31860709

RESUMO

Due to its ubiquity across northern latitudes, silver birch (Betula pendula Roth) is an attractive model species for studying geographical trait variation and acclimation capacity. Six birch provenances from 60 to 67°N across Finland were grown in a common garden and studied for provenance and genotype variation. We looked for differences in height growth, photosynthetic gas exchange and chlorophyll content index (CCI) and compared the gas exchange of early and late leaves on short and long shoots, respectively. The provenances stratified into southern and northern groups. Northern provenances attained less height growth increment and had higher stomatal conductance (gs) and lower intrinsic water-use efficiency (WUE, Anet/gs) than southern provenances, whereas net photosynthesis (Anet) or CCI did not show clear grouping. Short shoot leaves had lower gs and higher WUE than long shoot leaves in all provenances, but there was no difference in Anet between shoot types. The separation of the provenances into two groups according to their physiological responses might reflect the evolutionary history of B. pendula. Latitudinal differences in gas exchange and water use traits can have plausible consequences for global carbon and water fluxes in a warming climate.


Assuntos
Betula/genética , Fotossíntese , Clorofila , Europa (Continente) , Finlândia , Folhas de Planta
15.
Biotechniques ; 69(4): 270-280, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32815734

RESUMO

DNA extraction can be lengthy and sometimes ends up with amplification inhibitors. We present the potential of recombinase polymerase amplification (RPA) to replace plant DNA extraction. In our rapid 'RPA-PCR couple' concept, RPA is tuned to slower reaction kinetics to promote amplification of long targets. RPA primers amplify target and some flanking regions directly from simple plant macerates. Then PCR primers exponentially amplify the target directly from the RPA reaction. We present the coupling of RPA with conventional, TaqMan and SYBR Green PCR assays. We applied the concept to strawberry Phytophthora pathogens and the Phytophthora identification marker atp9-nad9. We found RPA-PCR couple specific, sensitive and reliable. The approach may also benefit other difficult samples such as food, feces and ancient samples.


Assuntos
DNA de Plantas/isolamento & purificação , Phytophthora/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Recombinases/genética , Benzotiazóis/farmacologia , DNA de Plantas/genética , Diaminas/farmacologia , Fragaria/genética , Fragaria/parasitologia , Cinética , Técnicas de Amplificação de Ácido Nucleico/métodos , Phytophthora/genética , Phytophthora/patogenicidade , Quinolinas/farmacologia
16.
Tree Physiol ; 40(4): 467-483, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-31860708

RESUMO

To study the effects of slightly elevated temperature and ozone (O3) on leaf structural characteristics of silver birch (Betula pendula Roth), saplings of four clonal genotypes of this species were exposed to elevated temperature (ambient air temperature +0.8-1.0 °C) and elevated O3 (1.3-1.4× ambient O3), alone and in combination, in an open-air exposure field over two growing seasons (2007 and 2008). So far, the impacts of moderate elevation of temperature or the combination of elevated temperature and O3 on leaf structure of silver birch have not been intensively studied, thus showing the urgent need for this type of studies. Elevated temperature significantly increased leaf size, reduced non-glandular trichome density, decreased epidermis thickness and increased plastoglobuli size in birch leaves during one or both growing seasons. During the second growing season, O3 elevation reduced leaf size, increased palisade layer thickness and decreased the number of plastoglobuli in spongy cells. Certain leaf structural changes observed under a single treatment of elevated temperature or O3, such as increase in the amount of chloroplasts or vacuole, were no longer detected at the combined treatment. Leaf structural responses to O3 and rising temperature may also depend on timing of the exposure during the plant and leaf development as indicated by the distinct changes in leaf structure along the experiment. Genotype-dependent cellular responses to the treatments were detected particularly in the palisade cells. Overall, this study showed that even a slight but realistic elevation in ambient temperature can notably modify leaf structure of silver birch saplings. Leaf structure, in turn, influences leaf function, thus potentially affecting acclimation capacity under changing climate.


Assuntos
Betula , Ozônio/farmacologia , Clima , Folhas de Planta , Temperatura
17.
Nat Commun ; 11(1): 2529, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439857

RESUMO

Climate warming is anticipated to make high latitude ecosystems stronger C sinks through increasing plant production. This effect might, however, be dampened by insect herbivores whose damage to plants at their background, non-outbreak densities may more than double under climate warming. Here, using an open-air warming experiment among Subarctic birch forest field layer vegetation, supplemented with birch plantlets, we show that a 2.3 °C air and 1.2 °C soil temperature increase can advance the growing season by 1-4 days, enhance soil N availability, leaf chlorophyll concentrations and plant growth up to 400%, 160% and 50% respectively, and lead up to 122% greater ecosystem CO2 uptake potential. However, comparable positive effects are also found when insect herbivory is reduced, and the effect of warming on C sink potential is intensified under reduced herbivory. Our results confirm the expected warming-induced increase in high latitude plant growth and CO2 uptake, but also reveal that herbivorous insects may significantly dampen the strengthening of the CO2 sink under climate warming.


Assuntos
Betula/metabolismo , Sequestro de Carbono , Florestas , Aquecimento Global , Herbivoria/fisiologia , Insetos/fisiologia , Animais , Betula/crescimento & desenvolvimento , Dióxido de Carbono/metabolismo , Clima Frio , Ecossistema , Nitrogênio/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Solo/química , Tempo (Meteorologia)
18.
Sci Adv ; 6(33): eabc1176, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32851188

RESUMO

Elevated tropospheric ozone concentrations induce adverse effects in plants. We reviewed how ozone affects (i) the composition and diversity of plant communities by affecting key physiological traits; (ii) foliar chemistry and the emission of volatiles, thereby affecting plant-plant competition, plant-insect interactions, and the composition of insect communities; and (iii) plant-soil-microbe interactions and the composition of soil communities by disrupting plant litterfall and altering root exudation, soil enzymatic activities, decomposition, and nutrient cycling. The community composition of soil microbes is consequently changed, and alpha diversity is often reduced. The effects depend on the environment and vary across space and time. We suggest that Atlantic islands in the Northern Hemisphere, the Mediterranean Basin, equatorial Africa, Ethiopia, the Indian coastline, the Himalayan region, southern Asia, and Japan have high endemic richness at high ozone risk by 2100.


Assuntos
Microbiota , Ozônio , Animais , Biodiversidade , Ecossistema , Etiópia , Insetos , Plantas , Solo/química , Microbiologia do Solo
19.
Planta ; 230(2): 419-27, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19484475

RESUMO

We studied the effects of slightly elevated temperature (T), O(3) concentration (O(3)) and their combination (T + O(3)) on the antioxidant defense, gas exchange and total leaf area of Betula pendula saplings in field conditions. During the second year of the experiment, T enhanced the total leaf area, net photosynthesis (P (n)) and maximum capacity of carboxylation, redox state of ascorbate and total antioxidant capacity in the apoplast. O(3) did not affect the total leaf area, but P (n) was slightly and g (s) significantly reduced. The saplings responded to elevated O(3) level by closing the stomata and by developing leaves with a lower leaf area per mass, rather than by accumulating ascorbate in the apoplast. The effects of T and O(3) on total leaf area and P (n) were counteractive. Elevated O(3) reduced the saplings' ability to utilize the warmer growth environment by increasing the stomatal limitation for photosynthesis and by reducing the redox state of ascorbate in the apoplast in the combination treatment as compared to T alone.


Assuntos
Antioxidantes/metabolismo , Betula/efeitos dos fármacos , Betula/metabolismo , Gases/metabolismo , Temperatura Alta , Ozônio/farmacologia , Oxirredução/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo
20.
Tree Physiol ; 29(1): 53-66, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19203932

RESUMO

The authors analyzed a suite of leaf characteristics that might help to explain the difference between ozone-sensitive and ozone-tolerant hybrid aspen (Populus tremula L. x Populus tremuloides Michx.) clones. An open-field experiment comprising ambient ozone and 1.5x ambient ozone concentration (about 35 ppb) and two soil nitrogen regimes (60 and 140 kg N ha(-1) year(-1)) was conducted over two growing seasons on potted plants of eight hybrid aspen clones. Four of the clones had previously been determined to be ozone sensitive based on impaired growth in response to elevated ozone concentration. Photosynthetic rate, chlorophyll fluorescence, and concentrations of chlorophyll, protein and carbohydrates were analyzed three times during the second growing season, and foliar phenolic concentrations were measured at the end of the second growing season. Nitrogen amendment counteracted the effects of ozone, but had no effect on growth-related ozone sensitivity of the clones. Ozone-sensitive clones had higher photosynthetic capacity and higher concentrations of Rubisco and phenolics than ozone-tolerant clones, but the effects of ozone were similar in the sensitive and tolerant groups. Nitrogen addition had no effect on phenolic concentration, but elevated ozone concentration increased the concentrations of chlorogenic acid and (+)-catechin. This study suggests that condensed tannins and catechin, but not salicylates or flavonol glycosides, play a role in the ozone tolerance of hybrid aspen.


Assuntos
Adaptação Fisiológica/fisiologia , Ozônio/metabolismo , Folhas de Planta/metabolismo , Populus/metabolismo , Adaptação Fisiológica/genética , Biomassa , Metabolismo dos Carboidratos , Quimera , Clorofila/metabolismo , Nitrogênio/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Populus/genética , Populus/crescimento & desenvolvimento , Ribulose-Bifosfato Carboxilase/metabolismo , Estresse Fisiológico , Árvores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa