Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Exp Bot ; 72(13): 4904-4914, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33872351

RESUMO

The processing of chloroplast RNA requires a large number of nuclear-encoded RNA-binding proteins (RBPs) that are imported post-translationally into the organelle. The chloroplast ribonucleoprotein 31A (CP31A) supports RNA editing at 13 sites and also supports the accumulation of multiple chloroplast mRNAs. In cp31a mutants it is the ndhF mRNA (coding for a subunit of the NDH complex) that is most strongly affected. CP31A becomes particularly important at low temperatures, where it is essential for chloroplast development in young tissue. Next to two RNA-recognition motifs (RRMs), CP31A has an N-terminal acidic domain that is phosphorylated at several sites. We investigated the function of the acidic domain in the role of CP31A in RNA metabolism and cold resistance. Using point mutagenesis, we demonstrate that the known phosphorylation sites within the acidic domain are irrelevant for any of the known functions of CP31A, both at normal and at low temperatures. Even when the entire acidic domain is removed, no effects on RNA editing were observed. By contrast, loss of the acidic domain reduced the ability of CP31A to stabilize the ndhF mRNA, which was associated with reduced NDH complex activity. Most importantly, acidic domain-less CP31A lines displayed bleached young tissue in the cold. Together, these data show that the different functions of CP31A can be assigned to different regions of the protein: the RRMs are sufficient to maintain RNA editing and to allow the accumulation of basal amounts of ndhF mRNA, while chloroplast development under cold conditions critically depends on the acidic domain.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , RNA de Cloroplastos , Proteínas de Ligação a RNA/genética
2.
Int J Mol Sci ; 21(16)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781615

RESUMO

Chloroplast RNA processing requires a large number of nuclear-encoded RNA binding proteins (RBPs) that are imported post-translationally into the organelle. Most of these RBPs are highly specific for one or few target RNAs. By contrast, members of the chloroplast ribonucleoprotein family (cpRNPs) have a wider RNA target range. We here present a quantitative analysis of RNA targets of the cpRNP CP31A using digestion-optimized RNA co-immunoprecipitation with deep sequencing (DO-RIP-seq). This identifies the mRNAs coding for subunits of the chloroplast NAD(P)H dehydrogenase (NDH) complex as main targets for CP31A. We demonstrate using whole-genome gene expression analysis and targeted RNA gel blot hybridization that the ndh mRNAs are all down-regulated in cp31a mutants. This diminishes the activity of the NDH complex. Our findings demonstrate how a chloroplast RNA binding protein can combine functionally related RNAs into one post-transcriptional operon.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Cloroplastos/metabolismo , NADPH Desidrogenase/metabolismo , Subunidades Proteicas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Mutação/genética , Subunidades Proteicas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
3.
Plant Physiol ; 173(4): 2138-2147, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28235890

RESUMO

Chlorophyll degradation plays important roles in leaf senescence including regulation of degradation of chlorophyll-binding proteins. Although most genes encoding enzymes of the chlorophyll degradation pathway have been identified, the regulation of their activity has not been fully understood. Green cotyledon mutants in legume are stay-green mutants, in which chlorophyll degradation is impaired during leaf senescence and seed maturation. Among them, the soybean (Glycine max) green cotyledon gene cytG is unique because it is maternally inherited. To isolate cytG, we extensively sequenced the soybean chloroplast genome, and detected a 5-bp insertion causing a frame-shift in psbM, which encodes one of the small subunits of photosystem II. Mutant tobacco plants (Nicotiana tabacum) with a disrupted psbM generated using a chloroplast transformation technique had green senescent leaves, confirming that cytG encodes PsbM. The phenotype of cytG was very similar to that of mutant of chlorophyll b reductase catalyzing the first step of chlorophyll b degradation. In fact, chlorophyll b-degrading activity in dark-grown cytG and psbM-knockout seedlings was significantly lower than that of wild-type plants. Our results suggest that PsbM is a unique protein linking photosynthesis in presenescent leaves with chlorophyll degradation during leaf senescence and seed maturation. Additionally, we discuss the origin of cytG, which may have been selected during domestication of soybean.


Assuntos
Cotilédone/genética , Glycine max/genética , Complexo de Proteína do Fotossistema II/genética , Proteínas de Plantas/genética , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Sequência de Bases , Biocatálise , Western Blotting , Clorofila/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Cotilédone/metabolismo , Escuridão , Regulação da Expressão Gênica de Plantas , Microscopia Eletrônica de Transmissão , Mutação , Fenótipo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Glycine max/metabolismo
4.
Breed Sci ; 68(2): 248-257, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29875609

RESUMO

Genomic selection is attracting attention in the field of crop breeding. To apply genomic selection effectively for autogamous (self-pollinating) crops, an efficient outcross system is desired. Since dominant male sterility is a powerful tool for easy and successive outcross of autogamous crops, we developed transgenic dominant male sterile rice (Oryza sativa L.) using the barnase gene that is expressed by the tapetum-specific promoter BoA9. Barnase-induced male sterile rice No. 10 (BMS10) was selected for its stable male sterility and normal growth characteristics. The BMS10 flowering habits, including heading date, flowering date, and daily flowering time of BMS10 tended to be delayed compared to wild type. When BMS10 and wild type were placed side-by-side and crossed under an open-pollinating condition, the seed-setting rate was <1.5%. When the clipping method was used to avoid the influence of late flowering habits, the seed-setting rate of BMS10 increased to a maximum of 86.4%. Although flowering synchronicity should be improved to increase the seed-setting rate, our results showed that this system can produce stable transgenic male sterility with normal female fertility in rice. The transgenic male sterile rice would promote a genomic selection-based breeding system in rice.

5.
AoB Plants ; 15(2): plac066, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36751367

RESUMO

Brassicaceae crops, which underwent whole-genome triplication during their evolution, have multiple copies of flowering-related genes. Interactions among multiple gene copies may be involved in flowering time regulation; however, this mechanism is poorly understood. In this study, we performed comprehensive, high-throughput RNA sequencing analysis to identify candidate genes involved in the extremely late-bolting (LB) trait in radish. Then, we examined the regulatory roles and interactions of radish FLOWERING LOCUS C (RsFLC) paralogs, the main flowering repressor candidates. Seven flowering integrator genes, five vernalization genes, nine photoperiodic/circadian clock genes and eight genes from other flowering pathways were differentially expressed in the early-bolting (EB) cultivar 'Aokubinagafuto' and LB radish cultivar 'Tokinashi' under different vernalization conditions. In the LB cultivar, RsFLC1 and RsFLC2 expression levels were maintained after 40 days of cold exposure. Bolting time was significantly correlated with the expression rates of RsFLC1 and RsFLC2. Using the EB × LB F2 population, we performed association analyses of genotypes with or without 1910- and 1627-bp insertions in the first introns of RsFLC1 and RsFLC2, respectively. The insertion alleles prevented the repression of their respective FLC genes under cold conditions. Interestingly, genotypes homozygous for RsFLC2 insertion alleles maintained high RsFLC1 and RsFLC3 expression levels under cold conditions, and two-way analysis of variance revealed that RsFLC1 and RsFLC3 expression was influenced by the RsFLC2 genotype. Our results indicate that insertions in the first introns of RsFLC1 and RsFLC2 contribute to the late-flowering trait in radish via different mechanisms. The RsFLC2 insertion allele conferred a strong delay in bolting by inhibiting the repression of all three RsFLC genes, suggesting that radish flowering time is determined by epistatic interactions among multiple FLC gene copies.

6.
Breed Sci ; 62(4): 328-33, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23341746

RESUMO

Given that feral transgenic canola (Brassica napus) from spilled seeds has been found outside of farmer's fields and that B. juncea is distributed worldwide, it is possible that introgression to B. juncea from B. napus has occurred. To investigate such introgression, we characterized the persistence of B. napus C genome chromosome (C-chromosome) regions in backcross progenies by B. napus C-chromosome specific simple sequence repeat (SSR) markers. We produced backcross progenies from B. juncea and F(1) hybrid of B. juncea × B. napus to evaluate persistence of C-chromosome region, and screened 83 markers from a set of reported C-chromosome specific SSR markers. Eighty-five percent of the SSR markers were deleted in the BC(1) obtained from B. juncea × F(1) hybrid, and this BC(1) exhibited a plant type like that of B. juncea. Most markers were deleted in BC(2) and BC(3) plants, with only two markers persisting in the BC(3). These results indicate a small possibility of persistence of C-chromosome regions in our backcross progenies. Knowledge about the persistence of B. napus C-chromosome regions in backcross progenies may contribute to shed light on gene introgression.

7.
Breed Sci ; 62(3): 274-81, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23226088

RESUMO

Several imported transgenic canola (Brassica napus) seeds have been spilled and have grown along roadsides around import ports. B. juncea, a relative of B. napus with which it has high interspecific crossability, is widely distributed throughout Japan. There is public concern about the harmful impacts of feral B. napus plants on biodiversity, but spontaneous hybridization between spilled B. napus and weedy B. juncea populations is hardly revealed. We evaluated the relationship between the hybridization frequency of B. juncea × B. napus and their planting distance in field experiments using the mutagenic herbicide-tolerant B. napus cv. Bn0861 as a pollen source for hybrid screening. The recipient B. juncea cv. Kikarashina was planted in an experimental field with Bn0861 planted in the center. No hybrids were detected under natural flowering conditions in 2009. However, the flowering period was artificially kept overlapping in 2010, leading to a hybridization frequency of 1.62% in the mixed planting area. The hybridization frequency decreased drastically with distance from the pollen source, and was lower under field conditions than estimated from the high crossability, implying that spontaneous hybridization between spilled B. napus and weedy B. juncea is unlikely in the natural environment.

8.
Plant Cell Rep ; 30(8): 1455-64, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21400224

RESUMO

An efficient genetic transformation method for kabocha squash (Cucurbita moschata Duch cv. Heiankogiku) was established by wounding cotyledonary node explants with aluminum borate whiskers prior to inoculation with Agrobacterium. Adventitious shoots were induced from only the proximal regions of the cotyledonary nodes and were most efficiently induced on Murashige-Skoog agar medium with 1 mg/L benzyladenine. Vortexing with 1% (w/v) aluminum borate whiskers significantly increased Agrobacterium infection efficiency in the proximal region of the explants. Transgenic plants were screened at the T(0) generation by sGFP fluorescence, genomic PCR, and Southern blot analyses. These transgenic plants grew normally and T(1) seeds were obtained. We confirmed stable integration of the transgene and its inheritance in T(1) generation plants by sGFP fluorescence and genomic PCR analyses. The average transgenic efficiency for producing kabocha squashes with our method was about 2.7%, a value sufficient for practical use.


Assuntos
Compostos de Alumínio/química , Boratos/química , Cucurbita/genética , Engenharia Genética/métodos , Transformação Genética , Agrobacterium/genética , DNA de Plantas/análise , Plantas Geneticamente Modificadas/genética , Técnicas de Cultura de Tecidos , Transgenes
9.
Plant Cell Rep ; 30(4): 529-38, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21140152

RESUMO

We investigated estrogen-inducible green fluorescent protein (GFP) expression patterns using an estrogen receptor fused chimeric transcription activator, XVE, in the monocotyledonous model plant rice (Oryza sativa L.). This system has been shown to be an effective chemical-inducible gene expression system in Arabidopsis and has been applied to other plants in order to investigate gene functions or produce marker-free transgenic plants. However, limited information is available on the correlation between inducer concentration and the expression level of the gene induced in monocots. Here, we produced a transgenic rice integrated estrogen-inducible GFP expression vector, pLex:GFP, and investigated dose-response and time-course patterns of GFP induction in rice calli and seedlings for the first time. With 17-ß-estradiol treatment at >5 µM, GFP signals were detected in the entire surface of calli within 2 days of culture. Highest GFP signals were extended for 8 days with estradiol treatment at 25 µM. In three-leaf-stage seedlings, GFP signals in the leaves of pLex:GFP-integrated transgenic lines were weaker than those in the leaves of p35S:GFP-integrated transgenic lines. However, GFP signals in the roots of pLex:GFP- and p35S:GFP-integrated transgenic lines were similar with estradiol treatment at >10 µM. With regard to controlling appropriate gene expression, these results might provide helpful indications on estradiol treatment conditions to be used for the XVE system in rice and other monocots.


Assuntos
Estrogênios/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Oryza/efeitos dos fármacos , Oryza/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/metabolismo , Southern Blotting , Western Blotting , Proteínas de Fluorescência Verde/genética , Oryza/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Reação em Cadeia da Polimerase
10.
Breed Sci ; 61(4): 358-65, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23136472

RESUMO

Imported genetically modified (GM) canola (Brassica napus) is approved by Japanese law. Some GM canola varieties have been found around importation sites, and there is public concern that these may have any harmful effects on related species such as reduction of wild relatives. Because B. juncea is distributed throughout Japan and is known to be high crossability with B. napus, it is assumed to be a recipient of B. napus. However, there are few reports for introgression of cross-combination in B. juncea × B. napus. To assess crossability, we artificially pollinated B. juncea with B. napus. After harvesting a large number of progeny seeds, we observed false hybrids and metaxenia of seed coats. Seed coat color was classified into four categories and false hybrids were confirmed by morphological characteristics and random amplified polymorphic DNA (RAPD) markers. Furthermore, the occurrence of false hybrids was affected by varietal differences in B. napus, whereas that of metaxenia was related to hybridity. Therefore, we suggest that metaxenia can be used as a marker for hybrid identification in B. juncea L. cv. Kikarashina × B. napus. Our results suggest that hybrid productivity in B. juncea × B. napus should not be evaluated by only seed productivity, crossability ought to be assessed the detection of true hybrids.

11.
Plant Biotechnol (Tokyo) ; 37(2): 223-232, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32821230

RESUMO

Plastid transformants form biofactories that are able to produce extra proteins in plastids when they are in a homoplasmic state. To date, plastid transformation has been reported in about twenty plant species; however, the production of homoplasmic plastid transformants is not always successful or easy. Heteroplasmic plants that contain wild-type plastids produce fewer target proteins and do not always successfully transfer transgenes to progeny. In order to promote the generation of homoplasmic plants, we developed a novel system using barnase-barster to eliminate wild-type plastids from heteroplasmic cells systematically. In this system, a chemically inducible cytotoxic barnase under a plastid transit signal was introduced into nuclear DNA and barster, which inhibits barnase, was integrated into plastid DNA with the primary selection markers aminoglycoside 3'-adenylyltransferase (aadA) and green fluorescence protein (GFP) gene. As expected, the expression of the plastid barnase was lethal to cells as seen in leaf segments, but barster expression in plastids rescued them. We then investigated the regeneration frequency of homoplasmic shoots from heteroplasmic leaf segments with or without barnase expression. The regeneration frequency of homoplasmic-like shoots expressing barnase-barster system was higher than that of shoots not expressing this. We expect that the application of this novel strategy for transformation of plastids will be supportive to generate homoplasmic plastid transformants in other plant species.

12.
Plant Physiol Biochem ; 131: 63-69, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29753601

RESUMO

The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9-mediated genome editing system has been widely applied as a powerful tool for modifying preferable endogenous genes. This system is highly expected to be further applied for the breeding of various agronomically important plant species. Here we report the modification of a fatty acid desaturase 2 gene (FAD2), which encodes an enzyme that catalyzes the desaturation of oleic acid, in Brassica napus cv. Westar using the CRISPR/Cas9 system. Two guide RNAs were designed for BnaA.FAD2.a (FAD2_Aa). Of 22 regenerated shoots with FAD2_Aa editing vectors, three contained mutant alleles. Further analysis revealed that two of three mature plants (Aa1#13 and Aa2#2) contained the mutant alleles. The mutant fad2_Aa allele had a 4-bp deletion, which was inherited by backcross progenies (BC1) in the Aa1#13 line. Furthermore, plants with the fad2_Aa allele without transgenes were selected from the BC1 progenies and plants homozygous for fad2_Aa were then produced by self-crossing these BC1 progenies (BC1S1). Fatty acid composition analysis of their seeds revealed a statistically significant increase in the content of oleic acid compared with that in wild-type seeds. These results showed that the application of the CRISPR/Cas9 system is useful to produce desirable mutant plants with an agronomically suitable phenotype by modifying the metabolic pathway in B. napus.


Assuntos
Brassica napus/genética , Sistemas CRISPR-Cas/genética , Ácidos Graxos Dessaturases/genética , Edição de Genes/métodos , Genes de Plantas/genética , Brassica napus/enzimologia , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/metabolismo , Técnicas de Genotipagem , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética
13.
Plant Biotechnol Rep ; 7(3): 267-276, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23874354

RESUMO

An improved method for genetic transformation of cucumber (Cucumis sativus L. cv. Shinhokusei No. 1) was developed. Vacuum infiltration of cotyledonary explants with Agrobacterium suspension enhanced the efficiency of Agrobacterium infection in the proximal regions of explants. Co-cultivation on filter paper wicks suppressed necrosis of explants, leading to increased regeneration efficiency. Putative transgenic plants were screened by kanamycin resistance and green fluorescent protein (GFP) fluorescence, and integration of the transgene into the cucumber genome was confirmed by genomic polymerase chain reaction (PCR) and Southern blotting. These transgenic plants grew normally and T1 seeds were obtained from 7 lines. Finally, stable integration and transmission of the transgene in T1 generations were confirmed by GFP fluorescence and genomic PCR. The average transgenic efficiency for producing cucumbers with our method was 11.9 ± 3.5 %, which is among the highest values reported until date using kanamycin as a selective agent.

14.
Plant Mol Biol ; 64(1-2): 219-24, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17334827

RESUMO

Acetolactate synthase (ALS) is the first common enzyme in the biosynthetic pathway of branched-chain amino acids. Mutations of specific amino acids in ALS have been known to confer resistance to ALS-inhibiting herbicides such as sulfonylureas and pyrimidinyl carboxy (PC) herbicides. However, mutations conferring exclusive resistance to PC have not yet been reported to date. We selected PC resistant rice calli, which were derived from anther culture, using one of the PCs, bispyribac-sodium (BS), as a selection agent. Two lines of BS-resistant plants carrying a novel mutation, the 95th Glycine to Alanine (G95A), in ALS were obtained. In vitro ALS activity assay indicated that the recombinant protein of G95A-mutated ALS (ALS-G95A) conferred highly specific resistance to PC herbicides. In order to determine if the ALS-G95A gene could be used as a selection marker for rice transformation, the ALS-G95A gene was connected to ubiquitin promoter and introduced into rice. PC resistant plants containing integrated ALS-G95A gene were obtained after selection with BS as a selection agent. In conclusion, novel G95A mutated ALS gene confers highly specific resistant to PC-herbicides and can be used as a selection marker.


Assuntos
Acetolactato Sintase/genética , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Mutação de Sentido Incorreto , Oryza/enzimologia , Marcadores Genéticos , Herbicidas/química , Oryza/efeitos dos fármacos , Oryza/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa