Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37345045

RESUMO

MDM2-SNP309 (rs2279744), a common genetic modifier of cancer incidence in Li-Fraumeni syndrome, modifies risk, age of onset, or prognosis in a variety of cancers. Melanoma incidence and outcomes vary by sex, and although SNP309 exerts an effect on the estrogen receptor, no consensus exists on its effect on melanoma. MDM2 and MDM4 restrain p53-mediated tumor suppression, independently or together. We investigated SNP309, an a priori MDM4-rs4245739, and two coinherited variants, in a population-based cohort of 3663 primary incident melanomas. Per-allele and per-haplotype (MDM2_SNP309-SNP285; MDM4_rs4245739-rs1563828) odds ratios (OR) for multiple-melanoma were estimated with logistic regression models. Hazard ratios (HR) for melanoma death were estimated with Cox proportional hazards models. In analyses adjusted for covariates, females carrying MDM4-rs4245739*C were more likely to develop multiple melanomas (ORper-allele = 1.25, 95% CI 1.03-1.51, and Ptrend = 0.03), while MDM2-rs2279744*G was inversely associated with melanoma-death (HRper-allele = 0.63, 95% CI 0.42-0.95, and Ptrend = 0.03). We identified 16 coinherited expression quantitative loci that control the expression of MDM2, MDM4, and other genes in the skin, brain, and lungs. Our results suggest that MDM4/MDM2 variants are associated with the development of subsequent primaries and with the death of melanoma in a sex-dependent manner. Further investigations of the complex MDM2/MDM4 motif, and its contribution to the tumor microenvironment and observed associations, are warranted.

2.
Pigment Cell Melanoma Res ; 24(2): 352-60, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21375697

RESUMO

DNA methylation, an epigenetic alteration typically occurring early in cancer development, could aid in the molecular diagnosis of melanoma. We determined technical feasibility for high-throughput DNA-methylation array-based profiling using formalin-fixed paraffin-embedded tissues for selection of candidate DNA-methylation differences between melanomas and nevi. Promoter methylation was evaluated in 27 common benign nevi and 22 primary invasive melanomas using a 1505 CpG site microarray. Unsupervised hierarchical clustering distinguished melanomas from nevi; 26 CpG sites in 22 genes were identified with significantly different methylation levels between melanomas and nevi after adjustment for age, sex, and multiple comparisons and with ß-value differences of ≥ 0.2. Prediction analysis for microarrays identified 12 CpG loci that were highly predictive of melanoma, with area under the receiver operating characteristic curves of > 0.95. Of our panel of 22 genes, 14 were statistically significant in an independent sample set of 29 nevi (including dysplastic nevi) and 25 primary invasive melanomas after adjustment for age, sex, and multiple comparisons. This first report of a DNA-methylation signature discriminating melanomas from nevi indicates that DNA methylation appears promising as an additional tool for enhancing melanoma diagnosis.


Assuntos
Metilação de DNA , Melanoma/genética , Nevo/genética , Neoplasias Cutâneas/genética , Biomarcadores Tumorais/genética , Epigênese Genética , Perfilação da Expressão Gênica , Humanos , Melanoma/diagnóstico , Melanoma/patologia , Nevo/diagnóstico , Nevo/patologia , Curva ROC , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/patologia , Análise Serial de Tecidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa