Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Toxicol Appl Pharmacol ; 486: 116929, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608961

RESUMO

Atrazine (ATZ), a widely used herbicide with potent endocrine-disrupting properties, has been implicated in hormonal disturbances and fertility issues. Sertoli cells (SCs) play a crucial role in providing mechanical and nutritional support of spermatogenesis. Herein, we aimed to study the effects of environmentally relevant ATZ concentrations on the nutritional support of spermatogenesis provided by SCs. For that, mouse SCs (TM4) were exposed to increasing ATZ concentrations (in µg/L: 0.3, 3, 30, 300, or 3000). After 24 h, cellular proliferation and metabolic activity were assessed. Mitochondrial activity and endogenous reactive oxygen species (ROS) production were evaluated using JC-1 and CM-H2DCFDA probes, respectively. We also analyzed protein levels of lactate dehydrogenase (LDH) using Western Blot and live cells glycolytic function through Seahorse XF Glycolysis Stress Test Kit. ATZ exposure decreased the activity of oxidoreductases in SCs, suggesting a decreased metabolic activity. Although ATZ is reported to induce oxidative stress, we did not observe alterations in mitochondrial membrane potential and ROS production across all tested concentrations. When we evaluated the glycolytic function of SCs, we observed that ATZ significantly impaired glycolysis and the glycolytic capacity at all tested concentrations. These results were supported by the decreased expression of LDH in SCs. Overall, our findings suggest that ATZ impairs the glycolytic function of SCs through LDH downregulation. Since lactate is the preferential energetic substrate for germ cells, exposure to ATZ may detrimentally impact the nutritional support crucial for spermatogenesis, hinting for a relationship between ATZ exposure and male infertility.


Assuntos
Atrazina , Regulação para Baixo , Glicólise , Herbicidas , L-Lactato Desidrogenase , Espécies Reativas de Oxigênio , Células de Sertoli , Animais , Masculino , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo , Atrazina/toxicidade , Camundongos , Glicólise/efeitos dos fármacos , Herbicidas/toxicidade , L-Lactato Desidrogenase/metabolismo , Regulação para Baixo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Estresse Oxidativo/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
2.
Eur J Clin Invest ; : e14289, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046266

RESUMO

BACKGROUND: Infertility is a major health issue, affecting 15% of reproductive-age couples with male factors contributing to 50% of cases. Asthenozoospermia (AS), or low sperm motility, is a common cause of male infertility with complex aetiology, involving genetic and metabolic alterations, inflammation and oxidative stress. However, the molecular mechanisms behind low motility are unclear. In this study, we used a metabolomics approach to identify metabolic biomarkers and pathways involved in sperm motility. METHODS: We compared the metabolome and lipidome of spermatozoa of men with normozoospermia (n = 44) and AS (n = 22) using untargeted LC-MS and the metabolome of seminal fluid using 1H-NMR. Additionally, we evaluated the seminal fluid redox status to assess the oxidative stress in the ejaculate. RESULTS: We identified 112 metabolites and 209 lipids in spermatozoa and 27 metabolites in the seminal fluid of normozoospermic and asthenozoospermic men. PCA analysis of the spermatozoa's metabolomics and lipidomics data showed a clear separation between groups. Spermatozoa of asthenozoospermic men presented lower levels of several amino acids, and increased levels of energetic substrates and lysophospholipids. However, the metabolome and redox status of the seminal fluid was not altered inAS. CONCLUSIONS: Our results indicate impaired metabolic pathways associated with redox homeostasis and amino acid, energy and lipid metabolism in AS. Taken together, these findings suggest that the metabolome and lipidome of human spermatozoa are key factors influencing their motility and that oxidative stress exposure during spermatogenesis or sperm maturation may be in the aetiology of decreased motility in AS.

3.
Int J Mol Sci ; 25(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38732272

RESUMO

Lung branching morphogenesis relies on intricate epithelial-mesenchymal interactions and signaling networks. Still, the interplay between signaling and energy metabolism in shaping embryonic lung development remains unexplored. Retinoic acid (RA) signaling influences lung proximal-distal patterning and branching morphogenesis, but its role as a metabolic modulator is unknown. Hence, this study investigates how RA signaling affects the metabolic profile of lung branching. We performed ex vivo lung explant culture of embryonic chicken lungs treated with DMSO, 1 µM RA, or 10 µM BMS493. Extracellular metabolite consumption/production was evaluated by using 1H-NMR spectroscopy. Mitochondrial respiration and biogenesis were also analyzed. Proliferation was assessed using an EdU-based assay. The expression of crucial metabolic/signaling components was examined through Western blot, qPCR, and in situ hybridization. RA signaling stimulation redirects glucose towards pyruvate and succinate production rather than to alanine or lactate. Inhibition of RA signaling reduces lung branching, resulting in a cystic-like phenotype while promoting mitochondrial function. Here, RA signaling emerges as a regulator of tissue proliferation and lactate dehydrogenase expression. Furthermore, RA governs fatty acid metabolism through an AMPK-dependent mechanism. These findings underscore RA's pivotal role in shaping lung metabolism during branching morphogenesis, contributing to our understanding of lung development and cystic-related lung disorders.


Assuntos
Metabolismo Energético , Pulmão , Morfogênese , Transdução de Sinais , Tretinoína , Animais , Tretinoína/metabolismo , Tretinoína/farmacologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/embriologia , Metabolismo Energético/efeitos dos fármacos , Morfogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Embrião de Galinha , Proliferação de Células/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Galinhas
4.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38203668

RESUMO

Embryo quality evaluation during in vitro development is a crucial factor for the success of assisted reproductive technologies (ARTs). However, the subjectivity inherent in the morphological evaluation by embryologists can introduce inconsistencies that impact the optimal embryo choice for transfer. To provide a more comprehensive evaluation of embryo quality, we undertook the integration of embryo metabolomics alongside standardized morphokinetic classification. The culture medium of 55 embryos (derived from 21 couples undergoing ICSI) was collected at two timepoints (days 3 and 5). Samples were split into Good (n = 29), Lagging (n = 19), and Bad (n = 10) according to embryo morphokinetic evaluation. Embryo metabolic performance was assessed by monitoring the variation in specific metabolites (pyruvate, lactate, alanine, glutamine, acetate, formate) using 1H-NMR. Adjusted metabolite differentials were observed during the first 3 days of culture and found to be discriminative of embryo quality at the end of day 5. Pyruvate, alanine, glutamine, and acetate were major contributors to this discrimination. Good and Lagging embryos were found to export and accumulate pyruvate and glutamine in the first 3 days of culture, while Bad embryos consumed them. This suggests that Bad embryos have less active metabolic activity than Good and Lagging embryos, and these two metabolites are putative biomarkers for embryo quality. This study provides a more comprehensive evaluation of embryo quality and can lead to improvements in ARTs by enabling the selection of the best embryos. By combining morphological assessment and metabolomics, the selection of high-quality embryos with the potential to result in successful pregnancies may become more accurate and consistent.


Assuntos
Glutamina , Técnicas de Reprodução Assistida , Feminino , Gravidez , Humanos , Ácido Pirúvico , Alanina , Ácido Láctico , Acetatos
5.
Sci Rep ; 14(1): 8252, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589418

RESUMO

Even though in silico drug ligand-based methods have been successful in predicting interactions with known target proteins, they struggle with new, unassessed targets. To address this challenge, we propose an approach that integrates structural data from AlphaFold 2 predicted protein structures into machine learning models. Our method extracts 3D structural protein fingerprints and combines them with ligand structural data to train a single machine learning model. This model captures the relationship between ligand properties and the unique structural features of various target proteins, enabling predictions for never before tested molecules and protein targets. To assess our model, we used a dataset of 144 Human G-protein Coupled Receptors (GPCRs) with over 140,000 measured inhibition constants (Ki) values. Results strongly suggest that our approach performs as well as state-of-the-art ligand-based methods. In a second modeling approach that used 129 targets for training and a separate test set of 15 different protein targets, our model correctly predicted interactions for 73% of targets, with explained variances exceeding 0.50 in 22% of cases. Our findings further verified that the usage of experimentally determined protein structures produced models that were statistically indistinct from the Alphafold synthetic structures. This study presents a proteo-chemometric drug screening approach that uses a simple and scalable method for extracting protein structural information for usage in machine learning models capable of predicting protein-molecule interactions even for orphan targets.


Assuntos
Aprendizado de Máquina , Receptores Acoplados a Proteínas G , Humanos , Ligantes , Receptores Acoplados a Proteínas G/química
6.
J Mol Med (Berl) ; 102(5): 617-628, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38451309

RESUMO

The health benefits of exercise training in a cancer setting are increasingly acknowledged; however, the underlying molecular mechanisms remain poorly understood. It has been suggested that extracellular vesicles (EVs) released from contracting skeletal muscles play a key role in mediating the systemic benefits of exercise by transporting bioactive molecules, including myokines. Nevertheless, skeletal muscle-derived vesicles account for only about 5% of plasma EVs, with the immune cells making the largest contribution. Moreover, it remains unclear whether the contribution of skeletal muscle-derived EVs increases after physical exercise or how muscle contraction modulates the secretory activity of other tissues and thus influences the content and profile of circulating EVs. Furthermore, the destination of EVs after exercise is unknown, and it depends on their molecular composition, particularly adhesion proteins. The cargo of EVs is influenced by the training program, with acute training sessions having a greater impact than chronic adaptations. Indeed, there are numerous questions regarding the role of EVs in mediating the effects of exercise, the clarification of which is critical for tailoring exercise training prescriptions and designing exercise mimetics for patients unable to engage in exercise programs. This review critically analyzes the current knowledge on the effects of exercise on the content and molecular composition of circulating EVs and their impact on cancer progression.


Assuntos
Vesículas Extracelulares , Músculo Esquelético , Neoplasias , Humanos , Vesículas Extracelulares/metabolismo , Músculo Esquelético/metabolismo , Neoplasias/metabolismo , Neoplasias/terapia , Animais , Exercício Físico , Contração Muscular
7.
Vascul Pharmacol ; 155: 107372, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583694

RESUMO

Oxidative stress and mitochondrial dysfunction are important elements for the pathophysiology of preeclampsia (PE), a multisystemic hypertensive syndrome of pregnancy, characterized by endothelial dysfunction and responsible for a large part of maternal and fetal morbidity and mortality worldwide. Researchers have dedicated their efforts to unraveling the intricate ways in which certain molecules influence both energy metabolism and oxidative stress. Exploring established methodologies from existing literature, shows that these investigations predominantly focus on the placenta, identified as a pivotal source that drives the changes observed in the disease. In this review, we discuss the role of oxidative stress in pathophysiology of PE, as well as metabolic/endothelial dysfunction. We further discuss the use of seahorse analyzers to study real-time bioenergetics of endothelial cells. Although the benefits are clear, few studies have presented results using this method to assess mitochondrial metabolism in these cells. We performed a search on MEDLINE/PubMed using the terms "Seahorse assay and endothelial dysfunction in HUVEC" as well as "Seahorse assay and preeclampsia". From our research, we selected 16 original peer-review papers for discussion. Notably, the first search retrieved studies involving Human Umbilical Vein Endothelial Cells (HUVECs) but none investigating bioenergetics in PE while the second search retrieved studies exploring the technique in PE but none of the studies used HUVECs. Additional studies are required to investigate real-time mitochondrial bioenergetics in PE. Clearly, there is a need for more complete studies to examine the nuances of mitochondrial bioenergetics, focusing on the contributions of HUVECs in the context of PE.


Assuntos
Metabolismo Energético , Células Endoteliais da Veia Umbilical Humana , Mitocôndrias , Estresse Oxidativo , Pré-Eclâmpsia , Humanos , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/fisiopatologia , Pré-Eclâmpsia/patologia , Gravidez , Feminino , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Animais , Valor Preditivo dos Testes
8.
Nat Rev Urol ; 21(8): 477-494, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38528255

RESUMO

Diets leading to caloric overload are linked to metabolic disorders and reproductive function impairment. Metabolic and hormonal abnormalities stand out as defining features of metabolic disorders, and substantially affect the functionality of the testis. Metabolic disorders induce testicular metabolic dysfunction, chronic inflammation and oxidative stress. The disruption of gastrointestinal, pancreatic, adipose tissue and testicular hormonal regulation induced by metabolic disorders can also contribute to a state of compromised fertility. In this Review, we will delve into the effects of high-fat diets and metabolic disorders on testicular metabolism and spermatogenesis, which are crucial elements for male reproductive function. Moreover, metabolic disorders have been shown to influence the epigenome of male gametes and might have a potential role in transmitting phenotype traits across generations. However, the existing evidence strongly underscores the unmet need to understand the mechanisms responsible for transgenerational paternal inheritance of male reproductive function impairment related to metabolic disorders. This knowledge could be useful for developing targeted interventions to prevent, counteract, and most of all break the perpetuation chain of male reproductive dysfunction associated with metabolic disorders across generations.


Assuntos
Doenças Metabólicas , Espermatogênese , Testículo , Masculino , Humanos , Espermatogênese/fisiologia , Testículo/metabolismo , Doenças Metabólicas/metabolismo , Doenças Metabólicas/fisiopatologia , Doenças Metabólicas/etiologia , Animais , Infertilidade Masculina/metabolismo , Infertilidade Masculina/etiologia , Infertilidade Masculina/fisiopatologia , Dieta Hiperlipídica/efeitos adversos
9.
Andrology ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39044679

RESUMO

BACKGROUND: Sperm-borne microRNAs play a pivotal role in influencing essential cellular processes during fertilization, impacting the quality of embryo development. Dysregulated microRNA profiles have been associated with compromised embryonic development and increased incidences of pregnancy loss. OBJECTIVE: This study aimed to investigate the potential associations between the abundance of miR-34c-5p and miR-191-3p in human spermatozoa with sperm quality, as well as with embryo quality and metabolic performance during in vitro development. MATERIALS AND METHODS: Thirteen couples who underwent a total of 13 cycles participated in this study. The sperm quality was assessed using conventional methods following World Health Organization guidelines. Quantitative polymerase chain reaction was employed to measure microRNA abundance in spermatozoa. Embryos were categorized as good, lagging, or bad based on morphokinetic evaluation. Evaluation of embryo metabolic performance involved tracking changes in specific metabolites within the cultured media using nuclear magnetic resonance spectroscopy. Statistical analysis was conducted to explore the correlation between microRNA abundance in human spermatozoa and all other collected data. RESULTS: Our findings revealed a negative correlation between the abundance of miR-34c-5p (but not miR-191-3p) and total sperm motility, potentially mediated by the modulation of key signaling pathways. Additionally, higher levels of miR-34c-5p in spermatozoa were strongly associated with the consumption or release of key metabolites by developing embryos, particularly those linked with lipid and glucose metabolism, suggesting enhanced metabolic performance, while miR-191-3p was mostly associated with glucose consumption. Concurrently, only miR-34c-5p content in spermatozoa correlated with higher embryo quality. DISCUSSION AND CONCLUSION: This study provides evidence suggesting that the abundance of miR-34c-5p in spermatozoa is correlated not only with total sperm motility but also with markers of embryo developmental competence, highlighting the potential significance of this sperm microRNA content as a biomarker in assisted reproduction.

10.
Metabolites ; 13(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38132862

RESUMO

In recent years, the treatment of advanced non-small cell lung cancer (NSCLC) has suffered a variety of alterations. Chemotherapy (CTX), immunotherapy (IT) and tyrosine kinase inhibitors (TKI) have shown remarkable results. However, not all patients with NSCLC respond to these drug treatments or receive durable benefits. In this framework, metabolomics has been applied to improve the diagnosis, treatment, and prognosis of lung cancer and particularly lung adenocarcinoma (AdC). In our study, metabolomics was used to analyze plasma samples from 18 patients with AdC treated with CTX or IT via 1H-NMR spectroscopy. Relevant clinical information was gathered, and several biochemical parameters were also evaluated throughout the treatments. During the follow-up of patients undergoing CTX or IT, imaging control is recommended in order to assess the effectiveness of the therapy. This evaluation is usually performed every three treatments. Based on this procedure, all the samples were collected before the beginning of the treatment and after three and six treatments. The identified and quantified metabolites in the analyzed plasma samples were the following: isoleucine, valine, alanine, acetate, lactate, glucose, tyrosine, and formate. Multivariate/univariate statistical analyses were performed. Our data are in accordance with previous published results, suggesting that the plasma glucose levels of patients under CTX become higher throughout the course of treatment, which we hypothesize could be related to the tumor response to the therapy. It was also found that alanine levels become lower during treatment with CTX regimens, a fact that could be associated with frailty. NMR spectra of long responders' profiles also showed similar results. Based on the results of the study, metabolomics can represent a potential option for future studies, in order to facilitate patient selection and the monitoring of therapy efficacy in treated patients with AdC. Further studies are needed to improve the prospective identification of predictive markers, particularly glucose and alanine levels, as well as confer guidance to NSCLC treatment and patient stratification, thus avoiding ineffective therapeutic strategies.

11.
Antioxidants (Basel) ; 13(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38247463

RESUMO

Leydig cells (LCs) play a pivotal role in male fertility, producing testosterone. Chromium (III) picolinate (CrPic3), a contentious supplement with antidiabetic and antioxidant properties, raises concerns regarding male fertility. Using a rodent LC line, we investigated the cytotoxicity of increasing CrPic3 doses. An insulin resistance (IR) model was established using palmitate (PA), and LCs were further exposed to CrPic3 to assess its antioxidant/antidiabetic activities. An exometabolome analysis was performed using 1H-NMR. Mitochondrial function and oxidative stress were evaluated via immunoblot. Steroidogenesis was assessed by quantifying androstenedione through ELISA. Our results uncover the toxic effects of CrPic3 on LCs even at low doses under IR conditions. Furthermore, even under these IR conditions, CrPic3 fails to enhance glucose consumption but restores the expression of mitochondrial complexes CII and CIII, alleviating oxidative stress in LCs. While baseline androgen production remained unaffected, CrPic3 promoted androstenedione production in LCs in the presence of PA, suggesting that it promotes cholesterol conversion into androgenic intermediates in this context. This study highlights the need for caution with CrPic3 even at lower doses. It provides valuable insights into the intricate factors influencing LCs metabolism and antioxidant defenses, shedding light on potential benefits and risks of CrPic3, particularly in IR conditions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa