RESUMO
The regulation of virulence in plant-pathogenic fungi has emerged as a key area of importance underlying host infections. Recent work has highlighted individual transcription factors (TFs) that serve important roles. A prominent example is PnPf2, a member of the Zn2Cys6 family of fungal TFs, which controls the expression of effectors and other virulence-associated genes in Parastagonospora nodorum during infection of wheat. PnPf2 orthologues are similarly important for other major fungal pathogens during infection of their respective host plants, and have also been shown to control polysaccharide metabolism in model saprophytes. In each case, the direct genomic targets and associated regulatory mechanisms were unknown. Significant insight was made here by investigating PnPf2 through chromatin-immunoprecipitation (ChIP) and mutagenesis approaches in P. nodorum. Two distinct binding motifs were characterised as positive regulatory elements and direct PnPf2 targets identified. These encompass known effectors and other components associated with the P. nodorum pathogenic lifestyle, such as carbohydrate-active enzymes and nutrient assimilators. The results support a direct involvement of PnPf2 in coordinating virulence on wheat. Other prominent PnPf2 targets included TF-encoding genes. While novel functions were observed for the TFs PnPro1, PnAda1, PnEbr1 and the carbon-catabolite repressor PnCreA, our investigation upheld PnPf2 as the predominant transcriptional regulator characterised in terms of direct and specific coordination of virulence on wheat, and provides important mechanistic insights that may be conserved for homologous TFs in other fungi.
Assuntos
Ascomicetos , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Doenças das Plantas , Fatores de Transcrição , Triticum , Triticum/microbiologia , Doenças das Plantas/microbiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Virulência , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Ascomicetos/patogenicidade , Ascomicetos/genética , Ascomicetos/metabolismoRESUMO
The fungus Parastagonospora nodorum uses proteinaceous necrotrophic effectors (NEs) to induce tissue necrosis on wheat leaves during infection, leading to the symptoms of septoria nodorum blotch (SNB). The NEs Tox1 and Tox3 induce necrosis on wheat possessing the dominant susceptibility genes Snn1 and Snn3B1/Snn3D1, respectively. We previously observed that Tox1 is epistatic to the expression of Tox3 and a quantitative trait locus (QTL) on chromosome 2A that contributes to SNB resistance/susceptibility. The expression of Tox1 is significantly higher in the Australian strain SN15 compared to the American strain SN4. Inspection of the Tox1 promoter region revealed a 401 bp promoter genetic element in SN4 positioned 267 bp upstream of the start codon that is absent in SN15, called PE401. Analysis of the world-wide P. nodorum population revealed that a high proportion of Northern Hemisphere isolates possess PE401 whereas the opposite was observed in representative P. nodorum isolates from Australia and South Africa. The presence of PE401 removed the epistatic effect of Tox1 on the contribution of the SNB 2A QTL but not Tox3. PE401 was introduced into the Tox1 promoter regulatory region in SN15 to test for direct regulatory roles. Tox1 expression was markedly reduced in the presence of PE401. This suggests a repressor molecule(s) binds PE401 and inhibits Tox1 transcription. Infection assays also demonstrated that P. nodorum which lacks PE401 is more pathogenic on Snn1 wheat varieties than P. nodorum carrying PE401. An infection competition assay between P. nodorum isogenic strains with and without PE401 indicated that the higher Tox1-expressing strain rescued the reduced virulence of the lower Tox1-expressing strain on Snn1 wheat. Our study demonstrated that Tox1 exhibits both 'selfish' and 'altruistic' characteristics. This offers an insight into a complex NE-NE interaction that is occurring within the P. nodorum population. The importance of PE401 in breeding for SNB resistance in wheat is discussed.
Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Micoses/genética , Doenças das Plantas/genética , Triticum/microbiologia , Resistência à Doença/genética , Suscetibilidade a Doenças , Epistasia Genética/genética , Interações Hospedeiro-Patógeno/genética , Regiões Promotoras Genéticas , Locos de Características Quantitativas , Virulência/genéticaRESUMO
ToxA is one of the most studied proteinaceous necrotrophic effectors produced by plant pathogens. It has been identified in four pathogens (Pyrenophora tritici-repentis, Parastagonospora nodorum, Parastagonospora pseudonodorum [formerly Parastagonospora avenaria f. sp. tritici], and Bipolaris sorokiniana) causing leaf spot diseases on cereals worldwide. To date, 24 different ToxA haplotypes have been identified. Some P. tritici-repentis and related species also express ToxB, another small protein necrotrophic effector. We present here a revised and standardized nomenclature for these effectors, which could be extended to other poly-haplotypic genes found across multiple species.
Assuntos
Proteínas Fúngicas , Micotoxinas , Haplótipos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Micotoxinas/genéticaRESUMO
OBJECTIVES: To identify the challenges and common issues that the rehabilitation health workforce experienced in delivering services in different practice settings across the world. These experiences could suggest approaches to improving rehabilitation care to people in need. DESIGN: A semi-structured interview protocol centering on 3 broad research questions was conducted to collect data. The data were analyzed to identify common themes across the cohort interviewed. SETTING: Interviews were conducted using Zoom. Interviewees not able to access Zoom provided written responses to the questions. PARTICIPANTS: Participants included 30 key rehabilitation opinion leaders from different disciplines from 24 countries, across world regions and income levels (N=30). INTERVENTIONS: NA. MAIN OUTCOME MEASURES: Although rehabilitation care deficiencies differ in severity, participants reported that the demand for services consistently outstrips available care, regardless of world region or income level. Access and social barriers, particularly in rural areas and remote regions, are common challenges for those delivering and receiving rehabilitation care. RESULTS: Individual voices from the field reported both challenges and hopeful changes in making rehabilitation services available and accessible. CONCLUSIONS: The descriptive approach undertaken has allowed individual voices, rarely included in studies, to be highlighted as meaningful data. Although the research findings are not generalizable beyond the convenience cohort included without further analysis and validation in specific local practice contexts, the authentic voices that spoke out on these issues demonstrated common themes of frustration with the current state of rehabilitation services delivery but also hopefulness that more solutions are on the horizon.
Assuntos
Atenção à Saúde , Mão de Obra em Saúde , Reabilitação , HumanosRESUMO
BACKGROUND: In patients with ST-segment elevation myocardial infarction (STEMI), percutaneous coronary intervention (PCI) of the culprit lesion reduces the risk of cardiovascular death or myocardial infarction. Whether PCI of nonculprit lesions further reduces the risk of such events is unclear. METHODS: We randomly assigned patients with STEMI and multivessel coronary artery disease who had undergone successful culprit-lesion PCI to a strategy of either complete revascularization with PCI of angiographically significant nonculprit lesions or no further revascularization. Randomization was stratified according to the intended timing of nonculprit-lesion PCI (either during or after the index hospitalization). The first coprimary outcome was the composite of cardiovascular death or myocardial infarction; the second coprimary outcome was the composite of cardiovascular death, myocardial infarction, or ischemia-driven revascularization. RESULTS: At a median follow-up of 3 years, the first coprimary outcome had occurred in 158 of the 2016 patients (7.8%) in the complete-revascularization group as compared with 213 of the 2025 patients (10.5%) in the culprit-lesion-only PCI group (hazard ratio, 0.74; 95% confidence interval [CI], 0.60 to 0.91; P = 0.004). The second coprimary outcome had occurred in 179 patients (8.9%) in the complete-revascularization group as compared with 339 patients (16.7%) in the culprit-lesion-only PCI group (hazard ratio, 0.51; 95% CI, 0.43 to 0.61; P<0.001). For both coprimary outcomes, the benefit of complete revascularization was consistently observed regardless of the intended timing of nonculprit-lesion PCI (P = 0.62 and P = 0.27 for interaction for the first and second coprimary outcomes, respectively). CONCLUSIONS: Among patients with STEMI and multivessel coronary artery disease, complete revascularization was superior to culprit-lesion-only PCI in reducing the risk of cardiovascular death or myocardial infarction, as well as the risk of cardiovascular death, myocardial infarction, or ischemia-driven revascularization. (Funded by the Canadian Institutes of Health Research and others; COMPLETE ClinicalTrials.gov number, NCT01740479.).
Assuntos
Doença da Artéria Coronariana/terapia , Intervenção Coronária Percutânea/métodos , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia , Idoso , Doenças Cardiovasculares/mortalidade , Terapia Combinada , Doença da Artéria Coronariana/complicações , Feminino , Seguimentos , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Revascularização Miocárdica/métodos , Antagonistas do Receptor Purinérgico P2Y/uso terapêutico , Recidiva , Infarto do Miocárdio com Supradesnível do Segmento ST/tratamento farmacológico , Infarto do Miocárdio com Supradesnível do Segmento ST/etiologia , Prevenção Secundária , StentsRESUMO
Plant-pathogenic fungi span diverse taxonomic lineages. Their host-infection strategies are often specialised and require the coordinated regulation of molecular virulence factors. Transcription factors (TFs) are fundamental regulators of gene expression, yet relatively few virulence-specific regulators are characterised in detail and their evolutionary trajectories are not well understood. Hence, this study compared the full range of TFs across taxonomically-diverse fungal proteomes and classified their lineages through an orthology analysis. The primary aims were to characterise differences in the range and profile of TF lineages broadly linked to plant-host association or pathogenic lifestyles, and to better characterise the evolutionary origin and trajectory of experimentally-validated virulence regulators. We observed significantly fewer TFs among obligate, host-associated pathogens, largely attributed to contractions in several Zn2Cys6 TF-orthogroup lineages. We also present novel insight into the key virulence-regulating TFs Ste12, Pf2 and EBR1, providing evidence for their ancestral origins, expansion and/or loss. Ultimately, the analysis presented here provides both primary evidence for TF evolution in fungal phytopathogenicity, as well as a practical phylogenetic resource to guide further detailed investigation on the regulation of virulence within key pathogen lineages.
Assuntos
Fungos , Fatores de Transcrição , Fungos/metabolismo , Filogenia , Plantas/microbiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência/genéticaRESUMO
BACKGROUND: Hyperhidrosis is a common skin condition characterized by excessive sweating, which can negatively impact on quality of life. It is under-researched compared with other conditions of similar prevalence. AIM: To generate a Top 10 list of research priorities for the treatment and management of hyperhidrosis, with equal input from people with hyperhidrosis and healthcare professionals (HCPs). METHODS: A priority setting partnership (PSP) was established and processes from the James Lind Alliance Handbook were followed. An online survey asked participants what questions they would like research to answer. These questions were grouped into 'indicative questions', which were ranked in a second survey of 45 indicative questions. The top 23 questions were then taken to a final workshop event attended by key stakeholders, and ranked to generate the Top 10 list of research priorities. RESULTS: There were 592 questions submitted by 268 respondents for the first survey. For the second survey, 286 participants ranked the indicative questions in order of priority. At the final workshop, the Top 10 list was generated. The top three priorities were: (i) Are there any safe and effective permanent solutions for hyperhidrosis? (ii) What is the most effective and safe oral treatment (drugs taken by mouth) for hyperhidrosis? and (iii) What are the most effective and safe ways to reduce sweating in particular areas of the body? CONCLUSIONS: There are many unanswered research questions that both people with hyperhidrosis and HCPs would like to see answered. The results from this PSP will help to ensure future research funding can be directed to these areas of priority.
Assuntos
Pesquisa Biomédica , Hiperidrose , Pessoal de Saúde , Prioridades em Saúde , Humanos , Hiperidrose/terapia , Qualidade de Vida , Inquéritos e QuestionáriosRESUMO
We report soliton-effect pulse compression of low energy (â¼25pJ), picosecond pulses on a photonic chip. An ultra-low-loss, dispersion-engineered 40-cm-long waveguide is used to compress 1.2-ps pulses by a factor of 18, which represents, to our knowledge, the largest compression factor yet experimentally demonstrated on-chip. Our scheme allows for interfacing with an on-chip picosecond source and offers a path towards a fully integrated stabilized frequency comb source.
RESUMO
The fungus Parastagonospora nodorum is a narrow host range necrotrophic fungal pathogen that causes Septoria nodorum blotch (SNB) of cereals, most notably wheat (Triticum aestivum). Although commonly observed on wheat seedlings, P. nodorum infection has the greatest effect on the adult crop. It results in leaf blotch, which limits photosynthesis and thus crop growth and yield. It can also affect the wheat ear, resulting in glume blotch, which directly affects grain quality. Reports of P. nodorum fungicide resistance, the increasing use of reduced tillage agronomic practices, and high evolutionary potential of the pathogen, combined with changes in climate and agricultural environments, mean that genetic resistance to SNB remains a high priority in many regions of wheat cultivation. In this review, we summarize current information on P. nodorum population structure and its implication for improved SNB management. We then review recent advances in the genetics of host resistance to P. nodorum and the necrotrophic effectors it secretes during infection, integrating the genomic positions of these genetic loci by using the recently released wheat reference genome assembly. Finally, we discuss the genetic and genomic tools now available for SNB resistance breeding and consider future opportunities and challenges in crop health management by using the wheat-P. nodorum interaction as a model.
Assuntos
Doenças das Plantas , Triticum , Ascomicetos , Gerenciamento Clínico , Resistência à Doença/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Triticum/genéticaRESUMO
The fungal pathogen Pyrenophora teres f. sp. maculata (Ptm), responsible for spot-form of net blotch (SFNB), is currently the most significant disease of barley in Australia and a major disease worldwide. Management of SFNB relies heavily on fungicides and in Australia the demethylase inhibitors (DMIs) predominate. There have been sporadic reports of resistance to DMIs in Ptm but the mechanisms remain obscure. Ptm isolates collected from 1996 to 2019 in Western Australia were tested for fungicide sensitivity levels. Decreased sensitivity to DMIs was observed in isolates collected after 2015. Resistance factors to tebuconazole fell into two classes; moderate resistance (MR; RF 6-11) and high resistance (HR; RFs 30-65). Mutations linked to resistance were detected in the promoter region and coding sequence of the DMI target gene Cyp51A. Solo-LTR insertion elements were found at 5 different locations in the promoter region. Three different non-synonymous mutations encoded an altered protein with a phenylalanine to leucine substitution at position 489, F489L (F495I in the archetype CYP51A of Aspergillus fumigatus). F489L mutations have also been found in DMI-resistant strains of P. teres f. sp. teres. Ptm isolates carrying either a LTR insertion element or a F489L allele displayed the MR1 or MR2 phenotypes, respectively. Isolates carrying both an insertion element and a F489L mutation displayed the HR phenotype. Multiple mechanisms acting both alone and in concert were found to contribute to DMI resistance in Ptm. Moreover, these mutations have emerged repeatedly in Western Australian Ptm populations by a process of parallel evolution.
Assuntos
Ascomicetos/genética , Inibidores Enzimáticos/farmacologia , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/patogenicidade , Mapeamento Cromossômico , Inibidores Enzimáticos/efeitos adversos , Fungicidas Industriais/efeitos adversos , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Hordeum/microbiologia , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genéticaRESUMO
KEY MESSAGE: Genetic mapping of sensitivity to the Pyrenophora tritici-repentis effector ToxB allowed development of a diagnostic genetic marker, and investigation of wheat pedigrees allowed transmission of sensitive alleles to be tracked. Tan spot, caused by the necrotrophic fungal pathogen Pyrenophora tritici-repentis, is a major disease of wheat (Triticum aestivum). Secretion of the P. tritici-repentis effector ToxB is thought to play a part in mediating infection, causing chlorosis of plant tissue. Here, genetic analysis using an association mapping panel (n = 480) and a multiparent advanced generation intercross (MAGIC) population (n founders = 8, n progeny = 643) genotyped with a 90,000 feature single nucleotide polymorphism (SNP) array found ToxB sensitivity to be highly heritable (h2 ≥ 0.9), controlled predominantly by the Tsc2 locus on chromosome 2B. Genetic mapping of Tsc2 delineated a 1921-kb interval containing 104 genes in the reference genome of ToxB-insensitive variety 'Chinese Spring'. This allowed development of a co-dominant genetic marker for Tsc2 allelic state, diagnostic for ToxB sensitivity in the association mapping panel. Phenotypic and genotypic analysis in a panel of wheat varieties post-dated the association mapping panel further supported the diagnostic nature of the marker. Combining ToxB phenotype and genotypic data with wheat pedigree datasets allowed historic sources of ToxB sensitivity to be tracked, finding the variety 'Maris Dove' to likely be the historic source of sensitive Tsc2 alleles in the wheat germplasm surveyed. Exploration of the Tsc2 region gene space in the ToxB-sensitive line 'Synthetic W7984' identified candidate genes for future investigation. Additionally, a minor ToxB sensitivity QTL was identified on chromosome 2A. The resources presented here will be of immediate use for marker-assisted selection for ToxB insensitivity and the development of germplasm with additional genetic recombination within the Tsc2 region.
Assuntos
Ascomicetos , Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Micotoxinas/toxicidade , Doenças das Plantas/genética , Triticum/genética , Mapeamento Cromossômico , Ligação Genética , Marcadores Genéticos , Genômica , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Locos de Características QuantitativasRESUMO
The economically important necrotrophic fungal pathogen, Pyrenophora tritici-repentis (Ptr), causes tan spot of wheat, a disease typified by foliar necrosis and chlorosis. The culture filtrate of an Australian Ptr isolate, M4, possesses phytotoxic activity and plant bioassay guided discovery led to the purification of necrosis inducing toxins called triticone A and B. High-resolution LC-MS/MS analysis of the culture filtrate identified an additional 37 triticone-like compounds. The biosynthetic gene cluster responsible for triticone production (the Ttc cluster) was identified and deletion of TtcA, a hybrid polyketide synthase (PKS)-nonribosomal peptide synthase (NRPS), abolished production of all triticones. The pathogenicity of mutant (ttcA) strains was not visibly affected in our assays. We hypothesize that triticones possess general antimicrobial activity important for competition in multi-microbial environments.
Assuntos
Ascomicetos/enzimologia , Proteínas Fúngicas/metabolismo , Lactamas/metabolismo , Peptídeo Sintases/metabolismo , Doenças das Plantas/microbiologia , Policetídeo Sintases/metabolismo , Triticum/microbiologia , Ascomicetos/química , Ascomicetos/genética , Ascomicetos/metabolismo , Austrália , Cromatografia Líquida , Proteínas Fúngicas/genética , Deleção de Genes , Lactamas/química , Peptídeo Sintases/genética , Policetídeo Sintases/genética , Espectrometria de Massas em TandemRESUMO
Effectors are molecules used by microbial pathogens to facilitate infection via effector-triggered susceptibility or tissue necrosis in their host. Much research has been focussed on the identification and elucidating the function of fungal effectors during plant pathogenesis. By comparison, knowledge of how phytopathogenic fungi regulate the expression of effector genes has been lagging. Several recent studies have illustrated the role of various transcription factors, chromosome-based control, effector epistasis, and mobilisation of endosomes within the fungal hyphae in regulating effector expression and virulence on the host plant. Improved knowledge of effector regulation is likely to assist in improving novel crop protection strategies.
Assuntos
Proteínas Fúngicas/metabolismo , Fungos/patogenicidade , Interações Hospedeiro-Patógeno/fisiologia , Doenças das Plantas/microbiologia , Plantas/microbiologia , Animais , Proteínas Fúngicas/genética , Humanos , Fatores de Transcrição/metabolismoRESUMO
Our understanding of the complexity of the oral biome and of the role of the various constituent bacteria in the aetiology of dental disease is growing. Probiotics and their relationship with prebiotics, as well as other microbiome-based interventions, could be useful in preventing and treating dental disease and in promoting oral health. However, given the promise and early stage of this treatment approach, there are also a number of ethical, social and regulatory issues associated with innovative probiotic therapy. In this article, a brief update is given on contemporary theories of the aetiology and management of the two commonest dental diseases, and on the roles of pre- and probiotics and oral biome transplant in the management of these diseases. The focus is primarily on four core issues: informed consent, risk-benefit assessment, how to determine suitable healthy donors, and commercialization and regulation. We discuss the safety and benefits of oral probiotics, not only concerning the products and quality control during their manufacture, but also regarding the depth of public knowledge about this topic. We point out that the requirement of listing ingredients honestly might be insufficient, and that the prevalent rhetoric of 'natural' and 'organic' as well as some health claims in the translational, innovative probiotic industry and markets are themselves misleading and should be carefully scrutinized. Finally, we suggest an ethical imperative to find a balance between scientific research and industry, and public health in the regulation of probiotics.
Assuntos
Promoção da Saúde/ética , Boca/microbiologia , Saúde Bucal , Prebióticos/administração & dosagem , Probióticos/uso terapêutico , Doenças Estomatognáticas/diagnóstico , Doenças Estomatognáticas/terapia , HumanosRESUMO
BACKGROUND: Pyrenophora tritici-repentis (Ptr) is a necrotrophic fungal pathogen that causes the major wheat disease, tan spot. We set out to provide essential genomics-based resources in order to better understand the pathogenicity mechanisms of this important pathogen. RESULTS: Here, we present eight new Ptr isolate genomes, assembled and annotated; representing races 1, 2 and 5, and a new race. We report a high quality Ptr reference genome, sequenced by PacBio technology with Illumina paired-end data support and optical mapping. An estimated 98% of the genome coverage was mapped to 10 chromosomal groups, using a two-enzyme hybrid approach. The final reference genome was 40.9 Mb and contained a total of 13,797 annotated genes, supported by transcriptomic and proteogenomics data sets. CONCLUSIONS: Whole genome comparative analysis revealed major chromosomal segmental rearrangements and fusions, highlighting intraspecific genome plasticity in this species. Furthermore, the Ptr race classification was not supported at the whole genome level, as phylogenetic analysis did not cluster the ToxA producing isolates. This expansion of available Ptr genomics resources will directly facilitate research aimed at controlling tan spot disease.
Assuntos
Ascomicetos/genética , Ascomicetos/fisiologia , Cromossomos Fúngicos/genética , Variação Genética , Genoma Fúngico/genética , Genômica , Triticum/microbiologia , Transferência Genética Horizontal , Genoma Mitocondrial/genética , Anotação de Sequência Molecular , Filogenia , Homologia de Sequência do Ácido NucleicoRESUMO
KEY MESSAGE: The fungus Parastagonospora nodorum causes Septoria nodorum blotch (SNB) of wheat. A genetically diverse wheat panel was used to dissect the complexity of SNB and identify novel sources of resistance. The fungus Parastagonospora nodorum is the causal agent of Septoria nodorum blotch (SNB) of wheat. The pathosystem is mediated by multiple fungal necrotrophic effector-host sensitivity gene interactions that include SnToxA-Tsn1, SnTox1-Snn1, and SnTox3-Snn3. A P. nodorum strain lacking SnToxA, SnTox1, and SnTox3 (toxa13) retained wild-type-like ability to infect some modern wheat cultivars, suggesting evidence of other effector-mediated susceptibility gene interactions or the lack of host resistance genes. To identify genomic regions harbouring such loci, we examined a panel of 295 historic wheat accessions from the N. I. Vavilov Institute of Plant Genetic Resources in Russia, which is comprised of genetically diverse landraces and breeding lines registered from 1920 to 1990. The wheat panel was subjected to effector bioassays, infection with P. nodorum wild type (SN15) and toxa13. In general, SN15 was more virulent than toxa13. Insensitivity to all three effectors contributed significantly to resistance against SN15, but not toxa13. Genome-wide association studies using phenotypes from SN15 infection detected quantitative trait loci (QTL) on chromosomes 1BS (Snn1), 2DS, 5AS, 5BS (Snn3), 3AL, 4AL, 4BS, and 7AS. For toxa13 infection, a QTL was detected on 5AS (similar to SN15), plus two additional QTL on 2DL and 7DL. Analysis of resistance phenotypes indicated that plant breeders may have inadvertently selected for effector insensitivity from 1940 onwards. We identify accessions that can be used to develop bi-parental mapping populations to characterise resistance-associated alleles for subsequent introgression into modern bread wheat to minimise the impact of SNB.
Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Triticum/genética , Alelos , Ascomicetos/patogenicidade , Epistasia Genética , Genes de Plantas , Estudos de Associação Genética , Variação Genética , Genótipo , Haplótipos , Fenótipo , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Triticum/microbiologiaRESUMO
BACKGROUND: Rigid internal fixation of the jaw bones is a routine procedure for the management of facial fractures. Titanium plates and screws are routinely used for this purpose. The limitations of this system has led to the development of plates manufactured from bioresorbable materials which, in some cases, omits the necessity for the second surgery. However, concerns remain about the stability of fixation and the length of time required for their degradation and the possibility of foreign body reactions. OBJECTIVES: To compare the effectiveness of bioresorbable fixation systems with titanium systems for the management of facial fractures. SEARCH METHODS: We searched the following databases: The Cochrane Oral Health Group's Trials Register (to 20th August 2008), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2008, Issue 3), MEDLINE (1950 to 20th August 2008), EMBASE (from 1980 to 20th August 2008), http://www.clinicaltrials.gov/ and http://www.controlled-trials.com (to 20th August 2008). SELECTION CRITERIA: Randomised controlled trials comparing resorbable versus titanium fixation systems used for facial fractures. DATA COLLECTION AND ANALYSIS: Retrieved studies were independently screened by two review authors. Results were to be expressed as random-effects models using mean differences for continuous outcomes and risk ratios for dichotomous outcomes with 95% confidence intervals. Heterogeneity was to be investigated including both clinical and methodological factors. MAIN RESULTS: The search strategy retrieved 53 potentially eligible studies. None of the retrieved studies met our inclusion criteria and all were excluded from this review. One study is awaiting classification as we failed to obtain the full text copy. Three ongoing trials were retrieved, two of which were stopped before recruiting the planned number of participants. In one study, the excess complications in the resorbable arm was declared as the reason for stopping the trial. AUTHORS' CONCLUSIONS: This review illustrates that there are no published randomised controlled clinical trials relevant to this review question. There is currently insufficient evidence for the effectiveness of resorbable fixation systems compared with conventional titanium systems for facial fractures. The findings of this review, based on the results of the aborted trials, do not suggest that resorbable plates are as effective as titanium plates. In future, the results of ongoing clinical trials may provide high level reliable evidence for assisting clinicians and patients for decision making. Trialists should design their studies accurately and comprehensively to meet the aims and objectives defined for the study.
Assuntos
Implantes Absorvíveis , Placas Ósseas , Ossos Faciais/lesões , Fraturas Cranianas/cirurgia , Titânio , Ossos Faciais/cirurgia , Fixação Interna de Fraturas , HumanosRESUMO
Fungal effector-host sensitivity gene interactions play a key role in determining the outcome of septoria nodorum blotch disease (SNB) caused by Parastagonospora nodorum on wheat. The pathosystem is complex and mediated by interaction of multiple fungal necrotrophic effector-host sensitivity gene systems. Three effector sensitivity gene systems are well characterized in this pathosystem; SnToxA-Tsn1, SnTox1-Snn1 and SnTox3-Snn3. We tested a wheat mapping population that segregated for Snn1 and Snn3 with SN15, an aggressive P. nodorum isolate that produces SnToxA, SnTox1 and SnTox3, to study the inheritance of sensitivity to SnTox1 and SnTox3 and disease susceptibility. Interval quantitative trait locus (QTL) mapping showed that the SnTox1-Snn1 interaction was paramount in SNB development on both seedlings and adult plants. No effect of the SnTox3-Snn3 interaction was observed under SN15 infection. The SnTox3-Snn3 interaction was however, detected in a strain of SN15 in which SnTox1 had been deleted (tox1-6). Gene expression analysis indicates increased SnTox3 expression in tox1-6 compared with SN15. This indicates that the failure to detect the SnTox3-Snn3 interaction in SN15 is due - at least in part - to suppressed expression of SnTox3 mediated by SnTox1. Furthermore, infection of the mapping population with a strain deleted in SnToxA, SnTox1 and SnTox3 (toxa13) unmasked a significant SNB QTL on 2DS where the SnTox2 effector sensitivity gene, Snn2, is located. This QTL was not observed in SN15 and tox1-6 infections and thus suggesting that SnToxA and/or SnTox3 were epistatic. Additional QTLs responding to SNB and effectors sensitivity were detected on 2AS1 and 3AL.
Assuntos
Ascomicetos/genética , Epistasia Genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética , Triticum/genética , Ascomicetos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Micotoxinas/genética , Micotoxinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plântula/genética , Plântula/microbiologia , Triticum/metabolismo , Triticum/microbiologiaRESUMO
Reader Comments | Submit a Comment The white paper reports the deliberations of a workshop focused on biotic challenges to plant health held in Washington, D.C. in September 2016. Ensuring health of food plants is critical to maintaining the quality and productivity of crops and for sustenance of the rapidly growing human population. There is a close linkage between food security and societal stability; however, global food security is threatened by the vulnerability of our agricultural systems to numerous pests, pathogens, weeds, and environmental stresses. These threats are aggravated by climate change, the globalization of agriculture, and an over-reliance on nonsustainable inputs. New analytical and computational technologies are providing unprecedented resolution at a variety of molecular, cellular, organismal, and population scales for crop plants as well as pathogens, pests, beneficial microbes, and weeds. It is now possible to both characterize useful or deleterious variation as well as precisely manipulate it. Data-driven, informed decisions based on knowledge of the variation of biotic challenges and of natural and synthetic variation in crop plants will enable deployment of durable interventions throughout the world. These should be integral, dynamic components of agricultural strategies for sustainable agriculture.