Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 110, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609906

RESUMO

BACKGROUND: The wasabi receptor, also known as the Transient Receptor Potential Ankyrin 1 (TRPA1) ion channel, is a potential target for development of repellents for insects, like the pine weevil (Hylobius abietis) feeding on conifer seedlings and causing damage in forestry. Heterologous expression of TRPA1 from pine weevil in the yeast Pichia pastoris can potentially provide protein for structural and functional studies. Here we take advantage of the Green Fluorescent Protein (GFP) tag to examine the various steps of heterologous expression, to get more insight in clone selection, expression and isolation of the intact purified protein. RESULTS: The sequence of HaTRPA1 is reported and GFP-tagged constructs were made of the full-length protein and a truncated version (Δ1-708 HaTRPA1), lacking the N-terminal ankyrin repeat domain. Clones were screened on GFP expression plates, induced in small liquid cultures and in fed-batch cultures, and evaluated by flow cytometry and fluorescence microscopy. The screening on plates successfully identifies low-expression clones, but fails to predict the ranking of the best performing clones in small-scale liquid cultures. The two constructs differ in their cellular localization. Δ1-708 HaTRPA1 is found in a ring at the perimeter of cell, whereas HaTRPA1 is forming highly fluorescent speckles in interior regions of the cell. The pattern is consistent in different clones of the same construct and persists in fed-batch culture. The expression of Δ1-708 HaTRPA1 decreases the viability more than HaTRPA1, and in fed-batch culture it is clear that intact cells first express Δ1-708 HaTRPA1 and then become damaged. Purifications show that both constructs suffer from degradation of the expressed protein, but especially the HaTRPA1 construct. CONCLUSIONS: The GFP tag makes it possible to follow expression by flow cytometry and fluorescence microscopy. Analyses of localization, cell viability and expression show that the former two parameters are specific for each of the two evaluated constructs, whereas the relative expression of the constructs varies with the cultivation method. High expression is not all that matters, so taking damaged cells into account, something that may be linked to protein degradation, is important when picking the most suitable construct, clone, and expression scheme.


Assuntos
Saccharomycetales , Gorgulhos , Animais , Proteínas de Fluorescência Verde/genética , Citometria de Fluxo
2.
Compos Part A Appl Sci Manuf ; 103: 314-326, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33867807

RESUMO

Isolating and observing the damage mechanisms associated with low-velocity impact in composites using traditional experiments can be challenging, due to damage process complexity and high strain rates. In this work, a new test method is presented that provides a means to study, in detail, the interaction of common impact damage mechanisms, namely delamination, matrix cracking, and delamination-migration, in a context less challenging than a real impact event. Carbon fiber reinforced polymer specimens containing a thin insert in one region were loaded in a biaxial-bending state of deformation. As a result, three-dimensional damage processes, involving delaminations at no more than three different interfaces that interact with one another via transverse matrix cracks, were observed and documented using ultrasonic testing and x-ray computed tomography. The data generated by the test is intended for use in numerical model validation. Simulations of this test are included in Part II of this paper.

3.
J Biomech ; 43(4): 599-605, 2010 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-20005517

RESUMO

Previous models of cortical bone adaptation, in which loading is imposed on the bone, have estimated the strains in the tissue using strain gauges, analytical beam theory, or finite element analysis. We used digital image correlation (DIC), tracing a speckle pattern on the surface of the bone during loading, to determine surface strains in a murine tibia during compressive loading through the knee joint. We examined whether these surface strains in the mouse tibia are modified following two weeks of load-induced adaptation by comparison with contralateral controls. Results indicated non-uniform strain patterns with isolated areas of high strain (0.5%), particularly on the medial side. Strain measurements were reproducible (standard deviation of the error 0.03%), similar between specimens, and in agreement with strain gauge measurements (between 0.1 and 0.2% strain). After structural adaptation, strains were more uniform across the tibial surface, particularly on the medial side where peak strains were reduced from 0.5% to 0.3%. Because DIC determines local strains over the entire surface, it will provide a better understanding of how strain stimulus influences the bone response during adaptation.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Modelos Biológicos , Processamento de Sinais Assistido por Computador , Tíbia/anatomia & histologia , Tíbia/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Simulação por Computador , Módulo de Elasticidade/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estatística como Assunto , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa