Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 109(1): 196-214, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34741366

RESUMO

The importance of the alternative donation of electrons to the ubiquinol pool via the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) complex has been demonstrated. However, the functional significance of this pathway during seed development and germination remains to be elucidated. To assess the function of this pathway, we performed a detailed metabolic and transcriptomic analysis of Arabidopsis mutants to test the molecular consequences of a dysfunctional ETF/ETFQO pathway. We demonstrate that the disruption of this pathway compromises seed germination in the absence of an external carbon source and also impacts seed size and yield. Total protein and storage protein content is reduced in dry seeds, whilst sucrose levels remain invariant. Seeds of ETFQO and related mutants were also characterized by an altered fatty acid composition. During seed development, lower levels of fatty acids and proteins accumulated in the etfqo-1 mutant as well as in mutants in the alternative electron donors isovaleryl-CoA dehydrogenase (ivdh-1) and d-2-hydroxyglutarate dehydrogenase (d2hgdh1-2). Furthermore, the content of several amino acids was increased in etfqo-1 mutants during seed development, indicating that these mutants are not using such amino acids as alternative energy source for respiration. Transcriptome analysis revealed alterations in the expression levels of several genes involved in energy and hormonal metabolism. Our findings demonstrated that the alternative pathway of respiration mediated by the ETF/ETFQO complex affects seed germination and development by directly adjusting carbon storage during seed filling. These results indicate a role for the pathway in the normal plant life cycle to complement its previously defined roles in the response to abiotic stress.


Assuntos
Aminoácidos/metabolismo , Arabidopsis/genética , Carbono/metabolismo , Flavoproteínas Transferidoras de Elétrons/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flavoproteínas Transferidoras de Elétrons/genética , Germinação , Proteínas Ferro-Enxofre/genética , Mutação , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Sementes/enzimologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
2.
J Exp Bot ; 73(12): 4113-4128, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35383842

RESUMO

Auxin is an important hormone playing crucial roles during fruit growth and ripening; however, the metabolic impact of changes in auxin signalling during tomato (Solanum lycopersicum L.) ripening remains unclear. Here, we investigated the significance of changes in auxin signalling during different stages of fruit development by analysing changes in tomato fruit quality and primary metabolism using mutants with either lower or higher auxin sensitivity [diageotropica (dgt) and entire mutants, respectively]. Altered auxin sensitivity modifies metabolism, through direct impacts on fruit respiration and fruit growth. We verified that the dgt mutant plants exhibit reductions in fruit set, total fruit dry weight, fruit size, number of seeds per fruit, and fresh weight loss during post-harvest. Sugar accumulation was associated with delayed fruit ripening in dgt, probably connected with reduced ethylene levels and respiration, coupled with a lower rate of starch degradation. In contrast, despite exhibiting parthenocarpy, increased auxin perception (entire) did not alter fruit ripening, leading to only minor changes in primary metabolism. By performing a comprehensive analysis, our results connect auxin signalling and metabolic changes during tomato fruit development, indicating that reduced auxin signalling led to extensive changes in sugar concentration and starch metabolism during tomato fruit ripening.


Assuntos
Solanum lycopersicum , Ciclofilinas/genética , Etilenos/metabolismo , Frutas , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amido/metabolismo , Açúcares/metabolismo
3.
Planta ; 253(1): 16, 2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33392753

RESUMO

MAIN CONCLUSION: Nitrogen promotes changes in SLA through metabolism and anatomical traits in Capsicum plants. Specific leaf area (SLA) is a key trait influencing light interception and light use efficiency that often impacts plant growth and production. SLA is a key trait explaining growth variations of plant species under different environments. Both light and nitrogen (N) supply are important determinants of SLA. To better understand the effect of irradiance level and N on SLA in Capsicum chinense, we evaluated primary metabolites and morphological traits of two commercial cultivars (Biquinho and Habanero) in response to changes in both parameters. Both genotypes showed increased SLA with shading, and a decrease in SLA in response to increased N supply, however, with Habanero showing a stable SLA in the range of N deficiency to sufficient N doses. Correlation analyses indicated that decreased SLA in response to higher N supply was mediated by altered amino acids, protein, and starch levels, influencing leaf density. Moreover, in the range of moderate N deficiency to N sufficiency, both genotypes exhibited differences in SLA response, with Biquinho and Habanero displaying alterations on palisade and spongy parenchyma, respectively. Altogether, the results suggest that SLA responses to N supply are modulated by the balance between certain metabolites content and genotype-dependent changes in the parenchyma cells influencing leaf thickness and density.


Assuntos
Capsicum , Células do Mesofilo , Nitrogênio , Folhas de Planta , Capsicum/anatomia & histologia , Capsicum/genética , Capsicum/metabolismo , Células do Mesofilo/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/anatomia & histologia
4.
Plant Cell Environ ; 42(2): 448-465, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30066402

RESUMO

Auxin modulates a range of plant developmental processes including embryogenesis, organogenesis, and shoot and root development. Recent studies have shown that plant hormones also strongly influence metabolic networks, which results in altered growth phenotypes. Modulating auxin signalling pathways may therefore provide an opportunity to alter crop performance. Here, we performed a detailed physiological and metabolic characterization of tomato (Solanum lycopersicum) mutants with either increased (entire) or reduced (diageotropica-dgt) auxin signalling to investigate the consequences of altered auxin signalling on photosynthesis, water use, and primary metabolism. We show that reduced auxin sensitivity in dgt led to anatomical and physiological modifications, including altered stomatal distribution along the leaf blade and reduced stomatal conductance, resulting in clear reductions in both photosynthesis and water loss in detached leaves. By contrast, plants with higher auxin sensitivity (entire) increased the photosynthetic capacity, as deduced by higher Vcmax and Jmax coupled with reduced stomatal limitation. Remarkably, our results demonstrate that auxin-sensitive mutants (dgt) are characterized by impairments in the usage of starch that led to lower growth, most likely associated with decreased respiration. Collectively, our findings suggest that mutations in different components of the auxin signalling pathway specifically modulate photosynthetic and respiratory processes.


Assuntos
Ácidos Indolacéticos/metabolismo , Mitocôndrias/metabolismo , Fotossíntese/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Solanum lycopersicum/crescimento & desenvolvimento , Clorofila/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiologia , Folhas de Planta/anatomia & histologia , Estômatos de Plantas/fisiologia , Transdução de Sinais/fisiologia , Água/metabolismo
5.
Plant Physiol ; 175(3): 1068-1081, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28899959

RESUMO

Malate is a central metabolite involved in a multiplicity of plant metabolic pathways, being associated with mitochondrial metabolism and playing significant roles in stomatal movements. Vacuolar malate transport has been characterized at the molecular level and is performed by at least one carrier protein and two channels in Arabidopsis (Arabidopsis thaliana) vacuoles. The absence of the Arabidopsis tonoplast Dicarboxylate Transporter (tDT) in the tdt knockout mutant was associated previously with an impaired accumulation of malate and fumarate in leaves. Here, we investigated the consequences of this lower accumulation on stomatal behavior and photosynthetic capacity as well as its putative metabolic impacts. Neither the stomatal conductance nor the kinetic responses to dark, light, or high CO2 were highly affected in tdt plants. In addition, we did not observe any impact on stomatal aperture following incubation with abscisic acid, malate, or citrate. Furthermore, an effect on photosynthetic capacity was not observed in the mutant lines. However, leaf mitochondrial metabolism was affected in the tdt plants. Levels of the intermediates of the tricarboxylic acid cycle were altered, and increases in both light and dark respiration were observed. We conclude that manipulation of the tonoplastic organic acid transporter impacted mitochondrial metabolism, while the overall stomatal and photosynthetic capacity were unaffected.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Fumaratos/metabolismo , Malatos/metabolismo , Mutação/genética , Transportadores de Ânions Orgânicos/genética , Estômatos de Plantas/fisiologia , Vacúolos/metabolismo , Aminoácidos/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Respiração Celular , Clorofila/metabolismo , Clorofila A , Ciclo do Ácido Cítrico , Fluorescência , Técnicas de Inativação de Genes , Metaboloma , Transportadores de Ânions Orgânicos/metabolismo , Fotoperíodo , Fotossíntese , Estômatos de Plantas/citologia , Amido/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa