Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Clin Immunol ; 261: 110164, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38417765

RESUMO

Multiple vaccines have been approved to control COVID-19 pandemic, with Pfizer/BioNTech (BNT162b2) being widely used. We conducted a longitudinal analysis of the immune response elicited after three doses of the BNT162b2 vaccine in individuals who have previously experienced SARS-CoV-2 infection and in unexperienced ones. We conducted immunological analyses and single-cell transcriptomics of circulating T and B lymphocytes, combined to CITE-seq or LIBRA-seq, and VDJ-seq. We found that antibody levels against SARS-CoV-2 Spike, NTD and RBD from wild-type, delta and omicron VoCs show comparable dynamics in both vaccination groups, with a peak after the second dose, a decline after six months and a restoration after the booster dose. The antibody neutralization activity was maintained, with lower titers against the omicron variant. Spike-specific memory B cell response was sustained over the vaccination schedule. Clonal analysis revealed that Spike-specific B cells were polyclonal, with a partial clone conservation from natural infection to vaccination. Spike-specific T cell responses were oriented towards effector and effector memory phenotypes, with similar trends in unexperienced and experienced individuals. The CD8 T cell compartment showed a higher clonal expansion and persistence than CD4 T cells. The first two vaccinations doses tended to induce new clones rather than promoting expansion of pre-existing clones. However, we identified a fraction of Spike-specific CD8 T cell clones persisting from natural infection that were boosted by vaccination and clones specifically induced by vaccination. Collectively, our observations revealed a moderate effect of the second dose in enhancing the immune responses elicited after the first vaccination. Differently, we found that a third dose was necessary to restore comparable levels of neutralizing antibodies and Spike-specific T and B cell responses in individuals who experienced a natural SARS-CoV-2 infection.


Assuntos
COVID-19 , Vacinas , Humanos , COVID-19/prevenção & controle , Vacina BNT162 , SARS-CoV-2 , Pandemias , Vacinação , Anticorpos Neutralizantes , Anticorpos Antivirais
2.
Bioorg Chem ; 147: 107365, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636436

RESUMO

Protein prenylation is one example of a broad class of post-translational modifications where proteins are covalently linked to various hydrophobic moieties. To globally identify and monitor levels of all prenylated proteins in a cell simultaneously, our laboratory and others have developed chemical proteomic approaches that rely on the metabolic incorporation of isoprenoid analogues bearing bio-orthogonal functionality followed by enrichment and subsequent quantitative proteomic analysis. Here, several improvements in the synthesis of the alkyne-containing isoprenoid analogue C15AlkOPP are reported to improve synthetic efficiency. Next, metabolic labeling with C15AlkOPP was optimized to obtain useful levels of metabolic incorporation of the probe in several types of primary cells. Those conditions were then used to study the prenylomes of motor neurons (ES-MNs), astrocytes (ES-As), and their embryonic stem cell progenitors (ESCs), which allowed for the identification of 54 prenylated proteins from ESCs, 50 from ES-MNs, and 84 from ES-As, representing all types of prenylation. Bioinformatic analysis revealed specific enriched pathways, including nervous system development, chemokine signaling, Rho GTPase signaling, and adhesion. Hierarchical clustering showed that most enriched pathways in all three cell types are related to GTPase activity and vesicular transport. In contrast, STRING analysis showed significant interactions in two populations that appear to be cell type dependent. The data provided herein demonstrates that robust incorporation of C15AlkOPP can be obtained in ES-MNs and related primary cells purified via magnetic-activated cell sorting allowing the identification and quantification of numerous prenylated proteins. These results suggest that metabolic labeling with C15AlkOPP should be an effective approach for investigating the role of prenylated proteins in primary cells in both normal cells and disease pathologies, including ALS.


Assuntos
Alcinos , Astrócitos , Neurônios Motores , Prenilação de Proteína , Astrócitos/metabolismo , Astrócitos/citologia , Animais , Alcinos/química , Alcinos/síntese química , Neurônios Motores/metabolismo , Neurônios Motores/citologia , Terpenos/química , Terpenos/síntese química , Terpenos/metabolismo , Camundongos , Estrutura Molecular , Células Cultivadas
3.
bioRxiv ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38496415

RESUMO

Protein prenylation is one example of a broad class of post-translational modifications where proteins are covalently linked to various hydrophobic moieties. To globally identify and monitor levels of all prenylated proteins in a cell simultaneously, our laboratory and others have developed chemical proteomic approaches that rely on the metabolic incorporation of isoprenoid analogues bearing bio-orthogonal functionality followed by enrichment and subsequent quantitative proteomic analysis. Here, several improvements in the synthesis of the alkyne-containing isoprenoid analogue C15AlkOPP are reported to improve synthetic efficiency. Next, metabolic labeling with C15AlkOPP was optimized to obtain useful levels of metabolic incorporation of the probe in several types of primary cells. Those conditions were then used to study the prenylomes of motor neurons (ES-MNs), astrocytes (ES-As), and their embryonic stem cell progenitors (ESCs), which allowed for the identification of 54 prenylated proteins from ESCs, 50 from ES-MNs and 84 from ES-As, representing all types of prenylation. Bioinformatic analysis revealed specific enriched pathways, including nervous system development, chemokine signaling, Rho GTPase signaling, and adhesion. Hierarchical clustering showed that most enriched pathways in all three cell types are related to GTPase activity and vesicular transport. In contrast, STRING analysis showed significant interactions in two populations that appear to be cell type dependent. The data provided herein demonstrates that robust incorporation of C15AlkOPP can be obtained in ES-MNs and related primary cells purified via magnetic-activated cell sorting allowing the identification and quantification of numerous prenylated proteins. These results suggest that metabolic labeling with C15AlkOPP should be an effective approach for investigating the role of prenylated proteins in primary cells in both normal cells and disease pathologies, including ALS.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa