Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 291(26): 13846-54, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27129274

RESUMO

Interleukin 6 plays a key role in mediating inflammatory reactions in autoimmune diseases and cancer, where it is also involved in metastasis and tissue invasion. Neutralizing antibodies against IL-6 and its receptor have been approved for therapeutic intervention or are in advanced stages of clinical development. Here we describe the crystal structures of the complexes of IL-6 with two Fabs derived from conventional camelid antibodies that antagonize the interaction between the cytokine and its receptor. The x-ray structures of these complexes provide insights into the mechanism of neutralization by the two antibodies and explain the very high potency of one of the antibodies. It effectively competes for binding to the cytokine with IL-6 receptor (IL-6R) by using side chains of two CDR residues filling the site I cavities of IL-6, thus mimicking the interactions of Phe(229) and Phe(279) of IL-6R. In the first antibody, a HCDR3 tryptophan binds similarly to hot spot residue Phe(279) Mutation of this HCDR3 Trp residue into any other residue except Tyr or Phe significantly weakens binding of the antibody to IL-6, as was also observed for IL-6R mutants of Phe(279) In the second antibody, the side chain of HCDR3 valine ties into site I like IL-6R Phe(279), whereas a LCDR1 tyrosine side chain occupies a second cavity within site I and mimics the interactions of IL-6R Phe(229).


Assuntos
Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Interleucina-6/antagonistas & inibidores , Receptores de Interleucina-6/química , Receptores de Interleucina-6/imunologia , Animais , Camelus , Humanos , Interleucina-6/química , Interleucina-6/imunologia , Camundongos , Estrutura Quaternária de Proteína
2.
Protein Eng Des Sel ; 29(4): 123-33, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26945588

RESUMO

Highly potent human antibodies are required to therapeutically neutralize cytokines such as interleukin-6 (IL-6) that is involved in many inflammatory diseases and malignancies. Although a number of mutagenesis approaches exist to perform antibody affinity maturation, these may cause antibody instability and production issues. Thus, a robust and easy antibody affinity maturation strategy to increase antibody potency remains highly desirable. By immunizing llama, cloning the 'immune' antibody repertoire and using phage display, we selected a diverse set of IL-6 antagonistic Fabs. Heavy chain shuffling was performed on the Fab with lowest off-rate, resulting in a panel of variants with even lower off-rate. Structural analysis of the Fab:IL-6 complex suggests that the increased affinity was partly due to a serine to tyrosine switch in HCDR2. This translated into neutralizing capacity in an in vivo model of IL-6 induced SAA production. Finally, a novel Fab library was designed, encoding all variations found in the natural repertoire of VH genes identified after heavy chain shuffling. High stringency selections resulted in identification of a Fab with 250-fold increased potency when re-formatted into IgG1. Compared with a heavily engineered anti-IL-6 monoclonal antibody currently in clinical development, this IgG was at least equally potent, showing the engineering process to have had led to a highly potent anti-IL-6 antibody.


Assuntos
Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/metabolismo , Mutação/genética , Biblioteca de Peptídeos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sequência de Aminoácidos , Animais , Afinidade de Anticorpos , Camelídeos Americanos/genética , Humanos , Fragmentos Fab das Imunoglobulinas/química , Interleucina-6/imunologia , Modelos Imunológicos , Modelos Moleculares , Proteínas Recombinantes/química , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa