Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Lipid Res ; 65(10): 100651, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39306041

RESUMO

Glycogen storage disease type Ia (GSDIa) is a rare, inherited glucose-6-phosphatase-α (G6Pase-α) deficiency-induced carbohydrate metabolism disorder. Although hyperlipidemia is a hallmark of GSDI, the extent of lipid metabolism disruption remains incompletely understood. Lipidomic analysis was performed to characterize the serum lipidome in patients with GSDIa, by including age- and sex-matched healthy controls and age-matched hypercholesterolemic controls. Metabolic control and dietary information biochemical markers were obtained from patients with GSDIa. Patients with GSDIa showed higher total serum lysophosphatidylcholine (Fold Change, (FC) 2.2, P < 0.0001), acyl-acyl-phosphatidylcholine (FC 2.1, P < 0.0001), and ceramide (FC 2.4, P < 0.0001) levels and bile acid (FC 0.7, P < 0.001), acylcarnitines (FC 0.7, P < 0.001), and cholesterol esters (FC 1.0, P < 0.001) than those of healthy controls, and higher di- (FC 1.1, P < 0.0001; FC 0.9, P < 0.01) and triacylglycerol (FC 6.3, P < 0.0001; FC 3.9, P < 0.01) levels than those of healthy controls and hypercholesterolemic subjects. Both total cholesterol and triglyceride values correlated with Cer (d16:1/22:0), Cer (d18:1/20:0), Cer (d18:1/20:0(OH)), Cer (d18:1/22:0), Cer (d18:1/23:0), Cer (d18:1/24:1), Cer (d18:2/22:0), Cer (d18:2/24:1). Total cholesterol also correlated with Cer (d18:1/24:0), Cer (d18:2/20:0), HexCer (d16:1/22:0), HexCer (d18:1/18:0), and Hex2Cer (d18:1/20:0). Triglyceridelevels correlated with Cer (d18:0/24:1). Alanine aminotransferase values correlated with Cer (d18:0/22:0), insulin with Cer (d18:1/22:1) and Cer (d18:1/24:1), and HDL with hexosylceramide (HexCer) (d18:2/23:0). These results expand on the currently known involvement of lipid metabolism in GSDIa. Circulating Cer may allow for refined dietary assessment compared with traditional biomarkers. Because specific lipid species are relatively easy to assess, they represent potential novel biomarkers of GSDIa.


Assuntos
Doença de Depósito de Glicogênio Tipo I , Lipídeos , Humanos , Masculino , Feminino , Doença de Depósito de Glicogênio Tipo I/sangue , Adulto , Lipídeos/sangue , Adolescente , Criança , Adulto Jovem , Metabolismo dos Lipídeos , Biomarcadores/sangue , Lipidômica , Pré-Escolar , Estudos de Casos e Controles
2.
Genes Dev ; 30(11): 1255-60, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27298334

RESUMO

Various tumors develop addiction to glutamine to support uncontrolled cell proliferation. Here we identify the nuclear receptor liver receptor homolog 1 (LRH-1) as a key regulator in the process of hepatic tumorigenesis through the coordination of a noncanonical glutamine pathway that is reliant on the mitochondrial and cytosolic transaminases glutamate pyruvate transaminase 2 (GPT2) and glutamate oxaloacetate transaminase 1 (GOT1), which fuel anabolic metabolism. In particular, we show that gain and loss of function of hepatic LRH-1 modulate the expression and activity of mitochondrial glutaminase 2 (GLS2), the first and rate-limiting step of this pathway. Acute and chronic deletion of hepatic LRH-1 blunts the deamination of glutamine and reduces glutamine-dependent anaplerosis. The robust reduction in glutaminolysis and the limiting availability of α-ketoglutarate in turn inhibit mTORC1 signaling to eventually block cell growth and proliferation. Collectively, these studies highlight the importance of LRH-1 in coordinating glutamine-induced metabolism and signaling to promote hepatocellular carcinogenesis.


Assuntos
Carcinogênese/metabolismo , Carcinogênese/patologia , Glutamina/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/fisiopatologia , Mitocôndrias/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Carcinogênese/induzido quimicamente , Dietilnitrosamina , Regulação Neoplásica da Expressão Gênica , Glutaminase/genética , Glutaminase/metabolismo , Fígado/enzimologia , Fígado/metabolismo , Fígado/fisiopatologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/enzimologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
3.
J Physiol ; 601(10): 1761-1780, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37010236

RESUMO

Hyperglycaemia in pregnancy (HIP) is a pregnancy complication characterized by mild to moderate hyperglycaemia that negatively impacts short- and long-term health of mother and child. However, relationships between severity and timing of pregnancy hyperglycaemia and postpartum outcomes have not been systemically investigated. We investigated the impact of hyperglycaemia developing during pregnancy (gestational diabetes mellitus, GDM) or already present pre-mating (pre-gestational diabetes mellitus, PDM) on maternal health and pregnancy outcomes. GDM and PDM were induced in C57BL/6NTac mice by combined 60% high fat diet (HF) and low dose streptozotocin (STZ). Animals were screened for PDM prior to mating, and all underwent an oral glucose tolerance test on gestational day (GD)15. Tissues were collected at GD18 or at postnatal day (PN)15. Among HFSTZ-treated dams, 34% developed PDM and 66% developed GDM, characterized by impaired glucose-induced insulin release and inadequate suppression of endogenous glucose production. No increased adiposity or overt insulin resistance was observed. Furthermore, markers of non-alcoholic fatty liver disease (NAFLD) were significantly increased in PDM at GD18 and were positively correlated with basal glucose levels at GD18 in GDM dams. By PN15, NAFLD markers were also increased in GDM dams. Only PDM affected pregnancy outcomes such as litter size. Our findings indicate that GDM and PDM, resulting in disturbances of maternal glucose homeostasis, increase the risk of postpartum NAFLD development, related to the onset and severity of pregnancy hyperglycaemia. These findings signal a need for earlier monitoring of maternal glycaemia and more rigorous follow-up of maternal health after GDM and PDM pregnancy in humans. KEY POINTS: We studied the impact of high-fat diet/streptozotocin induced hyperglycaemia in pregnancy in mice and found that this impaired glucose tolerance and insulin release. Litter size and embryo survival were compromised by pre-gestational, but not by gestational, diabetes. Despite postpartum recovery from hyperglycaemia in a majority of dams, liver disease markers were further elevated by postnatal day 15. Maternal liver disease markers were associated with the severity of hyperglycaemia at gestational day 18. The association between hyperglycaemic exposure and non-alcoholic fatty liver disease signals a need for more rigorous monitoring and follow-up of maternal glycaemia and health in diabetic pregnancy in humans.


Assuntos
Diabetes Gestacional , Hiperglicemia , Hepatopatia Gordurosa não Alcoólica , Humanos , Gravidez , Feminino , Criança , Camundongos , Animais , Hiperglicemia/complicações , Resultado da Gravidez , Estreptozocina/efeitos adversos , Camundongos Endogâmicos C57BL , Insulina , Glucose/metabolismo , Lactação
4.
Cardiovasc Diabetol ; 22(1): 144, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349757

RESUMO

BACKGROUND: The nuclear receptor corepressor 1 (NCOR1) plays an important role in the regulation of gene expression in immunometabolic conditions by connecting chromatin-modifying enzymes, coregulators and transcription factors. NCOR1 has been shown to be involved in cardiometabolic diseases. Recently, we demonstrated that the deletion of macrophage NCOR1 aggravates atherosclerosis by promoting CD36-triggered foam cell formation via PPARG derepression. PURPOSE: Since NCOR1 modulates the function of several key regulators involved in hepatic lipid and bile acid metabolism, we hypothesized that its deletion in hepatocytes alters lipid metabolism and atherogenesis. METHODS: To test this hypothesis, we generated hepatocyte-specific Ncor1 knockout mice on a Ldlr-/- background. Besides assessing the progression of the disease in thoracoabdominal aortae en face, we analyzed hepatic cholesterol and bile acid metabolism at expression and functional levels. RESULTS: Our data demonstrate that liver-specific Ncor1 knockout mice on an atherosclerosis-prone background develop less atherosclerotic lesions than controls. Interestingly, under chow diet, plasma cholesterol levels of liver-specific Ncor1 knockout mice were slightly higher compared to control, but strongly reduced compared to control mice after feeding them an atherogenic diet for 12 weeks. Moreover, the hepatic cholesterol content was decreased in liver-specific Ncor1 knockout compared to control mice. Our mechanistic data revealed that NCOR1 reprograms the synthesis of bile acids towards the alternative pathway, which in turn reduce bile hydrophobicity and enhances fecal cholesterol excretion. CONCLUSIONS: Our data suggest that hepatic Ncor1 deletion in mice decreases atherosclerosis development by reprograming bile acid metabolism and enhancing fecal cholesterol excretion.


Assuntos
Aterosclerose , Esteróis , Camundongos , Animais , Esteróis/metabolismo , Fígado/metabolismo , Colesterol , Aterosclerose/genética , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Camundongos Knockout , Ácidos e Sais Biliares/metabolismo , Metabolismo dos Lipídeos , Camundongos Endogâmicos C57BL , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo
5.
Hum Mol Genet ; 29(2): 264-273, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31813960

RESUMO

Glycogen storage disease type 1a (GSD Ia) is an inborn error of metabolism caused by mutations in the G6PC gene, encoding the catalytic subunit of glucose-6-phosphatase. Early symptoms include severe fasting intolerance, failure to thrive and hepatomegaly, biochemically associated with nonketotic hypoglycemia, fasting hyperlactidemia, hyperuricemia and hyperlipidemia. Dietary management is the cornerstone of treatment aiming at maintaining euglycemia, prevention of secondary metabolic perturbations and long-term complications, including liver (hepatocellular adenomas and carcinomas), kidney and bone disease (hypovitaminosis D and osteoporosis). As impaired vitamin A homeostasis also associates with similar symptoms and is coordinated by the liver, we here analysed whether vitamin A metabolism is affected in GSD Ia patients and liver-specific G6pc-/- knock-out mice. Serum levels of retinol and retinol binding protein 4 (RBP4) were significantly increased in both GSD Ia patients and L-G6pc-/- mice. In contrast, hepatic retinol levels were significantly reduced in L-G6pc-/- mice, while hepatic retinyl palmitate (vitamin A storage form) and RBP4 levels were not altered. Transcript and protein analyses indicate an enhanced production of retinol and reduced conversion the retinoic acids (unchanged LRAT, Pnpla2/ATGL and Pnpla3 up, Cyp26a1 down) in L-G6pc-/- mice. Aberrant expression of genes involved in vitamin A metabolism was associated with reduced basal messenger RNA levels of markers of inflammation (Cd68, Tnfα, Nos2, Il-6) and fibrosis (Col1a1, Acta2, Tgfß, Timp1) in livers of L-G6pc-/- mice. In conclusion, GSD Ia is associated with elevated serum retinol and RBP4 levels, which may contribute to disease symptoms, including osteoporosis and hepatic steatosis.


Assuntos
Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I/metabolismo , Fígado/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Vitamina A/sangue , Adolescente , Adulto , Animais , Diterpenos/metabolismo , Fígado Gorduroso/metabolismo , Feminino , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo I/sangue , Doença de Depósito de Glicogênio Tipo I/enzimologia , Doença de Depósito de Glicogênio Tipo I/patologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Osteoporose/metabolismo , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol/genética , Ésteres de Retinil , Vitamina A/análogos & derivados , Vitamina A/metabolismo
6.
Hepatology ; 74(5): 2491-2507, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34157136

RESUMO

BACKGROUND AND AIMS: Patients with glycogen storage disease type 1a (GSD-1a) primarily present with life-threatening hypoglycemia and display severe liver disease characterized by hepatomegaly. Despite strict dietary management, long-term complications still occur, such as liver tumor development. Variations in residual glucose-6-phosphatase (G6PC1) activity likely contribute to phenotypic heterogeneity in biochemical symptoms and complications between patients. However, lack of insight into the relationship between G6PC1 activity and symptoms/complications and poor understanding of the underlying disease mechanisms pose major challenges to provide optimal health care and quality of life for GSD-1a patients. Currently available GSD-1a animal models are not suitable to systematically investigate the relationship between hepatic G6PC activity and phenotypic heterogeneity or the contribution of gene-gene interactions (GGIs) in the liver. APPROACH AND RESULTS: To meet these needs, we generated and characterized a hepatocyte-specific GSD-1a mouse model using somatic CRISPR/CRISPR-associated protein 9 (Cas9)-mediated gene editing. Hepatic G6pc editing reduced hepatic G6PC activity up to 98% and resulted in failure to thrive, fasting hypoglycemia, hypertriglyceridemia, hepatomegaly, hepatic steatosis (HS), and increased liver tumor incidence. This approach was furthermore successful in simultaneously modulating hepatic G6PC and carbohydrate response element-binding protein, a transcription factor that is activated in GSD-1a and protects against HS under these conditions. Importantly, it also allowed for the modeling of a spectrum of GSD-1a phenotypes in terms of hepatic G6PC activity, fasting hypoglycemia, hypertriglyceridemia, hepatomegaly and HS. CONCLUSIONS: In conclusion, we show that somatic CRISPR/Cas9-mediated gene editing allows for the modeling of a spectrum of hepatocyte-borne GSD-1a disease symptoms in mice and to efficiently study GGIs in the liver. This approach opens perspectives for translational research and will likely contribute to personalized treatments for GSD-1a and other genetic liver diseases.


Assuntos
Proteína 9 Associada à CRISPR/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Modelos Animais de Doenças , Edição de Genes/métodos , Heterogeneidade Genética , Doença de Depósito de Glicogênio Tipo I/genética , Fenótipo , Animais , Vetores Genéticos , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Hepatócitos/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
Hepatology ; 72(5): 1638-1653, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32083759

RESUMO

BACKGROUND AND AIMS: Glycogen storage disease (GSD) type 1a is an inborn error of metabolism caused by defective glucose-6-phosphatase catalytic subunit (G6PC) activity. Patients with GSD 1a exhibit severe hepatomegaly due to glycogen and triglyceride (TG) accumulation in the liver. We have shown that the activity of carbohydrate response element binding protein (ChREBP), a key regulator of glycolysis and de novo lipogenesis, is increased in GSD 1a. In the current study, we assessed the contribution of ChREBP to nonalcoholic fatty liver disease (NAFLD) development in a mouse model for hepatic GSD 1a. APPROACH AND RESULTS: Liver-specific G6pc-knockout (L-G6pc-/- ) mice were treated with adeno-associated viruses (AAVs) 2 or 8 directed against short hairpin ChREBP to normalize hepatic ChREBP activity to levels observed in wild-type mice receiving AAV8-scrambled short hairpin RNA (shSCR). Hepatic ChREBP knockdown markedly increased liver weight and hepatocyte size in L-G6pc-/- mice. This was associated with hepatic accumulation of G6P, glycogen, and lipids, whereas the expression of glycolytic and lipogenic genes was reduced. Enzyme activities, flux measurements, hepatic metabolite analysis and very low density lipoprotein (VLDL)-TG secretion assays revealed that hepatic ChREBP knockdown reduced downstream glycolysis and de novo lipogenesis but also strongly suppressed hepatic VLDL lipidation, hence promoting the storage of "old fat." Interestingly, enhanced VLDL-TG secretion in shSCR-treated L-G6pc-/- mice associated with a ChREBP-dependent induction of the VLDL lipidation proteins microsomal TG transfer protein and transmembrane 6 superfamily member 2 (TM6SF2), the latter being confirmed by ChIP-qPCR. CONCLUSIONS: Attenuation of hepatic ChREBP induction in GSD 1a liver aggravates hepatomegaly because of further accumulation of glycogen and lipids as a result of reduced glycolysis and suppressed VLDL-TG secretion. TM6SF2, critical for VLDL formation, was identified as a ChREBP target in mouse liver. Altogether, our data show that enhanced ChREBP activity limits NAFLD development in GSD 1a by balancing hepatic TG production and secretion.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Doença de Depósito de Glicogênio Tipo I/complicações , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Dependovirus/genética , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Glucose-6-Fosfatase/genética , Glicogênio/metabolismo , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/metabolismo , Glicólise , Hepatócitos , Humanos , Lipogênese , Lipoproteínas VLDL/metabolismo , Masculino , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , RNA Interferente Pequeno/genética , Triglicerídeos/metabolismo
8.
J Inherit Metab Dis ; 44(5): 1136-1150, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33834518

RESUMO

Continuous glucose monitoring (CGM) systems have great potential for real-time assessment of glycemic variation in patients with hepatic glycogen storage disease (GSD). However, detailed descriptions and in-depth analysis of CGM data from hepatic GSD patients during interventions are scarce. This is a retrospective in-depth analysis of CGM parameters, acquired in a continuous, real-time fashion describing glucose management in 15 individual GSD patients. CGM subsets are obtained both in-hospital and at home, upon nocturnal dietary intervention (n = 1), starch loads (n = 11) and treatment of GSD Ib patients with empagliflozin (n = 3). Descriptive CGM parameters, and parameters reflecting glycemic variation and glycemic control are considered useful CGM outcome parameters. Furthermore, the combination of first and second order derivatives, cumulative sum and Fourier analysis identified both subtle and sudden changes in glucose management; hence, aiding assessment of dietary and medical interventions. CGM data interpolation for nocturnal intervals reduced confounding by physical activity and diet. Based on these analyses, we conclude that in-depth CGM analysis can be a powerful tool to assess glucose management and optimize treatment in individual hepatic GSD patients.


Assuntos
Glicemia , Doença de Depósito de Glicogênio , Adolescente , Automonitorização da Glicemia , Criança , Pré-Escolar , Conjuntos de Dados como Assunto , Feminino , Glucose , Humanos , Masculino , Análise de Regressão , Estudos Retrospectivos , Adulto Jovem
9.
J Inherit Metab Dis ; 44(4): 926-938, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33543789

RESUMO

D,L-3-hydroxybutyrate (D,L-3-HB, a ketone body) treatment has been described in several inborn errors of metabolism, including multiple acyl-CoA dehydrogenase deficiency (MADD; glutaric aciduria type II). We aimed to improve the understanding of enantiomer-specific pharmacokinetics of D,L-3-HB. Using UPLC-MS/MS, we analyzed D-3-HB and L-3-HB concentrations in blood samples from three MADD patients, and blood and tissue samples from healthy rats, upon D,L-3-HB salt administration (patients: 736-1123 mg/kg/day; rats: 1579-6317 mg/kg/day of salt-free D,L-3-HB). D,L-3-HB administration caused substantially higher L-3-HB concentrations than D-3-HB. In MADD patients, both enantiomers peaked at 30 to 60 minutes, and approached baseline after 3 hours. In rats, D,L-3-HB administration significantly increased Cmax and AUC of D-3-HB in a dose-dependent manner (controls vs ascending dose groups for Cmax : 0.10 vs 0.30-0.35-0.50 mmol/L, and AUC: 14 vs 58-71-106 minutes*mmol/L), whereas for L-3-HB the increases were significant compared to controls, but not dose proportional (Cmax : 0.01 vs 1.88-1.92-1.98 mmol/L, and AUC: 1 vs 380-454-479 minutes*mmol/L). L-3-HB concentrations increased extensively in brain, heart, liver, and muscle, whereas the most profound rise in D-3-HB was observed in heart and liver. Our study provides important knowledge on the absorption and distribution upon oral D,L-3-HB. The enantiomer-specific pharmacokinetics implies differential metabolic fates of D-3-HB and L-3-HB.


Assuntos
Ácido 3-Hidroxibutírico/administração & dosagem , Ácido 3-Hidroxibutírico/farmacocinética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/tratamento farmacológico , Acil-CoA Desidrogenase/genética , Administração Oral , Animais , Cromatografia Líquida , Humanos , Masculino , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Ratos , Ratos Wistar , Espectrometria de Massas em Tandem
10.
J Inherit Metab Dis ; 44(4): 879-892, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33739445

RESUMO

Prevention of hypertriglyceridemia is one of the biomedical targets in Glycogen Storage Disease type Ia (GSD Ia) patients, yet it is unclear how hypoglycemia links to plasma triglyceride (TG) levels. We analyzed whole-body TG metabolism in normoglycemic (fed) and hypoglycemic (fasted) hepatocyte-specific glucose-6-phosphatase deficient (L-G6pc-/- ) mice. De novo fatty acid synthesis contributed substantially to hepatic TG accumulation in normoglycemic L-G6pc-/- mice. In hypoglycemic conditions, enhanced adipose tissue lipolysis was the main driver of liver steatosis, supported by elevated free fatty acid concentrations in GSD Ia mice and GSD Ia patients. Plasma very-low-density lipoprotein (VLDL) levels were increased in GSD Ia patients and in normoglycemic L-G6pc-/- mice, and further elevated in hypoglycemic L-G6pc-/- mice. VLDL-TG secretion rates were doubled in normo- and hypoglycemic L-G6pc-/- mice, while VLDL-TG catabolism was selectively inhibited in hypoglycemic L-G6pc-/- mice. In conclusion, fasting-induced hypoglycemia in L-G6pc-/- mice promotes adipose tissue lipolysis and arrests VLDL catabolism. This mechanism likely contributes to aggravated liver steatosis and dyslipidemia in GSD Ia patients with poor glycemic control and may explain clinical heterogeneity in hypertriglyceridemia between GSD Ia patients.


Assuntos
Glucose/metabolismo , Doença de Depósito de Glicogênio Tipo I/complicações , Hipertrigliceridemia/etiologia , Hipoglicemia/etiologia , Lipoproteínas VLDL/metabolismo , Triglicerídeos/metabolismo , Adulto , Idoso , Animais , Modelos Animais de Doenças , Fígado Gorduroso/etiologia , Feminino , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/metabolismo , Hepatócitos/metabolismo , Humanos , Hipertrigliceridemia/prevenção & controle , Hipoglicemia/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos , Pessoa de Meia-Idade
11.
Eur Heart J ; 41(9): 995-1005, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31529020

RESUMO

AIMS: Nuclear receptors and their cofactors regulate key pathophysiological processes in atherosclerosis development. The transcriptional activity of these nuclear receptors is controlled by the nuclear receptor corepressors (NCOR), scaffolding proteins that form the basis of large corepressor complexes. Studies with primary macrophages demonstrated that the deletion of Ncor1 increases the expression of atherosclerotic molecules. However, the role of nuclear receptor corepressors in atherogenesis is unknown. METHODS AND RESULTS: We generated myeloid cell-specific Ncor1 knockout mice and crossbred them with low-density lipoprotein receptor (Ldlr) knockouts to study the role of macrophage NCOR1 in atherosclerosis. We demonstrate that myeloid cell-specific deletion of nuclear receptor corepressor 1 (NCOR1) aggravates atherosclerosis development in mice. Macrophage Ncor1-deficiency leads to increased foam cell formation, enhanced expression of pro-inflammatory cytokines, and atherosclerotic lesions characterized by larger necrotic cores and thinner fibrous caps. The immunometabolic effects of NCOR1 are mediated via suppression of peroxisome proliferator-activated receptor gamma (PPARγ) target genes in mouse and human macrophages, which lead to an enhanced expression of the CD36 scavenger receptor and subsequent increase in oxidized low-density lipoprotein uptake in the absence of NCOR1. Interestingly, in human atherosclerotic plaques, the expression of NCOR1 is reduced whereas the PPARγ signature is increased, and this signature is more pronounced in ruptured compared with non-ruptured carotid plaques. CONCLUSIONS: Our findings show that macrophage NCOR1 blocks the pro-atherogenic functions of PPARγ in atherosclerosis and suggest that stabilizing the NCOR1-PPARγ binding could be a promising strategy to block the pro-atherogenic functions of plaque macrophages and lesion progression in atherosclerotic patients.


Assuntos
Aterosclerose , Macrófagos , Correpressor 1 de Receptor Nuclear , PPAR gama , Animais , Aterosclerose/genética , Aterosclerose/prevenção & controle , Células Espumosas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Correpressor 1 de Receptor Nuclear/genética , PPAR gama/genética , Receptores de LDL
12.
Hepatology ; 70(6): 2171-2184, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31102537

RESUMO

It is well established that, besides facilitating lipid absorption, bile acids act as signaling molecules that modulate glucose and lipid metabolism. Bile acid metabolism, in turn, is controlled by several nutrient-sensitive transcription factors. Altered intrahepatic glucose signaling in type 2 diabetes associates with perturbed bile acid synthesis. We aimed to characterize the regulatory role of the primary intracellular metabolite of glucose, glucose-6-phosphate (G6P), on bile acid metabolism. Hepatic gene expression patterns and bile acid composition were analyzed in mice that accumulate G6P in the liver, that is, liver-specific glucose-6-phosphatase knockout (L-G6pc-/- ) mice, and mice treated with a pharmacological inhibitor of the G6P transporter. Hepatic G6P accumulation induces sterol 12α-hydroxylase (Cyp8b1) expression, which is mediated by the major glucose-sensitive transcription factor, carbohydrate response element-binding protein (ChREBP). Activation of the G6P-ChREBP-CYP8B1 axis increases the relative abundance of cholic-acid-derived bile acids and induces physiologically relevant shifts in bile composition. The G6P-ChREBP-dependent change in bile acid hydrophobicity associates with elevated plasma campesterol/cholesterol ratio and reduced fecal neutral sterol loss, compatible with enhanced intestinal cholesterol absorption. Conclusion: We report that G6P, the primary intracellular metabolite of glucose, controls hepatic bile acid synthesis. Our work identifies hepatic G6P-ChREBP-CYP8B1 signaling as a regulatory axis in control of bile acid and cholesterol metabolism.


Assuntos
Ácidos e Sais Biliares/biossíntese , Glucose-6-Fosfato/fisiologia , Fígado/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Colesterol/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esteroide 12-alfa-Hidroxilase/fisiologia
13.
J Inherit Metab Dis ; 43(1): 63-70, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30916397

RESUMO

Gene therapy is currently considered as the optimal treatment for inborn errors of metabolism (IEMs), as it aims to permanently compensate for the primary genetic defect. However, emerging gene editing approaches such as CRISPR-Cas9, in which the DNA of the host organism is edited at a precise location, may have outperforming therapeutic potential. Gene editing strategies aim to correct the actual genetic mutation, while circumventing issues associated with conventional compensation gene therapy. Such strategies can also be repurposed to normalize gene expression changes that occur secondary to the genetic defect. Moreover, besides the genetic causes of IEMs, it is increasingly recognized that their clinical phenotypes are associated with epigenetic changes. Because epigenetic alterations are principally reversible, this may offer new opportunities for treatment of IEM patients. Here, we present an overview of the promises of epigenetics in eventually treating IEMs. We discuss the concepts of gene and epigenetic editing, and the advantages and disadvantages of current and upcoming gene-based therapies for treatment of IEMs.


Assuntos
Edição de Genes/métodos , Terapia Genética/métodos , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/terapia , Sistemas CRISPR-Cas , Epigenômica/métodos , Humanos , Erros Inatos do Metabolismo/diagnóstico
14.
Hepatology ; 66(6): 2042-2054, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28727166

RESUMO

It is a long-standing enigma how glycogen storage disease (GSD) type I patients retain a limited capacity for endogenous glucose production despite the loss of glucose-6-phosphatase activity. Insight into the source of residual endogenous glucose production is of clinical importance given the risk of sudden death in these patients, but so far contradictory mechanisms have been proposed. We investigated glucose-6-phosphatase-independent endogenous glucose production in hepatocytes isolated from a liver-specific GSD Ia mouse model (L-G6pc-/- mice) and performed real-time analysis of hepatic glucose fluxes and glycogen metabolism in L-G6pc-/- mice using state-of-the-art stable isotope methodologies. Here we show that G6pc-deficient hepatocytes are capable of producing glucose. In vivo analysis of hepatic glucose metabolism revealed that the hepatic glucokinase flux was decreased by 95% in L-G6pc-/- mice. It also showed increased glycogen phosphorylase flux in L-G6pc-/- mice, which is coupled to the release of free glucose through glycogen debranching. Although the ex vivo activities of debranching enzyme and lysosomal acid maltase, two major hepatic α-glucosidases, were unaltered in L-G6pc-/- mice, pharmacological inhibition of α-glucosidase activity almost completely abolished residual glucose production by G6pc-deficient hepatocytes. CONCLUSION: Our data indicate that hepatocytes contribute to residual glucose production in GSD Ia. We show that α-glucosidase activity, i.e. glycogen debranching and/or lysosomal glycogen breakdown, contributes to residual glucose production by GSD Ia hepatocytes. A strong reduction in hepatic GCK flux in L-G6pc-/- mice furthermore limits the phosphorylation of free glucose synthesized by G6pc-deficient hepatocytes, allowing the release of glucose into the circulation. The almost complete abrogation of GCK flux in G6pc-deficient liver also explains the contradictory reports on residual glucose production in GSD Ia patients. (Hepatology 2017;66:2042-2054).


Assuntos
Glucose/metabolismo , Doença de Depósito de Glicogênio Tipo I/metabolismo , Hepatócitos/metabolismo , Animais , Modelos Animais de Doenças , Galactose/metabolismo , Glucose-6-Fosfatase/genética , Glicerol/metabolismo , Masculino , Camundongos , alfa-Glucosidases/metabolismo
15.
J Inherit Metab Dis ; 40(5): 695-702, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28397058

RESUMO

OBJECTIVE: To study heterogeneity between patients with glycogen storage disease type Ia (GSD Ia), a rare inherited disorder of carbohydrate metabolism caused by the deficiency of glucose-6-phosphatase (G6Pase). STUDY DESIGN: Descriptive retrospective study of longitudinal clinical and biochemical data and long-term complications in 20 GSD Ia patients. We included 11 patients with homozygous G6PC mutations and siblings from four families carrying identical G6PC genotypes. To display subtle variations for repeated triglyceride measurements with respect to time for individual patients, CUSUM-analysis graphs were constructed. RESULTS: Patients with different homozygous G6PC mutations showed important differences in height, BMI, and biochemical parameters (i.e., lactate, uric acid, triglyceride, and cholesterol concentrations). Furthermore, CUSUM-analysis predicts and displays subtle changes in longitudinal blood triglyceride concentrations. Siblings in families also displayed important differences in biochemical parameters (i.e., lactate, uric acid, triglycerides, and cholesterol concentrations) and long-term complications (i.e., liver adenomas, nephropathy, and osteopenia/osteoporosis). CONCLUSIONS: Differences between GSD Ia patients reflect large clinical and biochemical heterogeneity. Heterogeneity between GSD Ia patients with homozygous G6PC mutations indicate an important role of the G6PC genotype/mutations. Differences between affected siblings suggest an additional role (genetic and/or environmental) of modifying factors defining the GSD Ia phenotype. CUSUM-analysis can facilitate single-patient monitoring of metabolic control and future application of this method may improve precision medicine for patients both with GSD and remaining inherited metabolic diseases.


Assuntos
Doença de Depósito de Glicogênio Tipo I/metabolismo , Adolescente , Adulto , Criança , Pré-Escolar , Colesterol/sangue , Feminino , Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I/sangue , Doença de Depósito de Glicogênio Tipo I/genética , Homozigoto , Humanos , Estudos Longitudinais , Masculino , Mutação/genética , Estudos Retrospectivos , Triglicerídeos/sangue , Adulto Jovem
16.
FASEB J ; 29(4): 1153-64, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25477282

RESUMO

Liver X receptor (LXR) agonists exert potent antiatherosclerotic actions but simultaneously induce excessive triglyceride (TG) accumulation in the liver. To obtain a detailed insight into the underlying mechanism of hepatic TG accumulation, we used a novel computational modeling approach called analysis of dynamic adaptations in parameter trajectories (ADAPT). We revealed that both input and output fluxes to hepatic TG content are considerably induced on LXR activation and that in the early phase of LXR agonism, hepatic steatosis results from only a minor imbalance between the two. It is generally believed that LXR-induced hepatic steatosis results from increased de novo lipogenesis (DNL). In contrast, ADAPT predicted that the hepatic influx of free fatty acids is the major contributor to hepatic TG accumulation in the early phase of LXR activation. Qualitative validation of this prediction showed a 5-fold increase in the contribution of plasma palmitate to hepatic monounsaturated fatty acids on acute LXR activation, whereas DNL was not yet significantly increased. This study illustrates that complex effects of pharmacological intervention can be translated into distinct patterns of metabolic regulation through state-of-the-art mathematical modeling.


Assuntos
Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Receptores Nucleares Órfãos/metabolismo , Animais , Aterosclerose/tratamento farmacológico , Simulação por Computador , Ácidos Graxos não Esterificados/metabolismo , Hidrocarbonetos Fluorados/farmacologia , Hidrocarbonetos Fluorados/toxicidade , Lipogênese , Lipoproteínas VLDL/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Receptores X do Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Modelos Biológicos , Receptores Nucleares Órfãos/agonistas , Receptores Nucleares Órfãos/deficiência , PPAR gama/deficiência , PPAR gama/genética , PPAR gama/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/toxicidade , Biologia de Sistemas , Triglicerídeos/metabolismo
17.
PLoS Comput Biol ; 10(5): e1003579, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24784354

RESUMO

Disturbances of lipoprotein metabolism are recognized as indicators of cardiometabolic disease risk. Lipoprotein size and composition, measured in a lipoprotein profile, are considered to be disease risk markers. However, the measured profile is a collective result of complex metabolic interactions, which complicates the identification of changes in metabolism. In this study we aim to develop a method which quantitatively relates murine lipoprotein size, composition and concentration to the molecular mechanisms underlying lipoprotein metabolism. We introduce a computational framework which incorporates a novel kinetic model of murine lipoprotein metabolism. The model is applied to compute a distribution of plasma lipoproteins, which is then related to experimental lipoprotein profiles through the generation of an in silico lipoprotein profile. The model was first applied to profiles obtained from wild-type C57Bl/6J mice. The results provided insight into the interplay of lipoprotein production, remodelling and catabolism. Moreover, the concentration and metabolism of unmeasured lipoprotein components could be determined. The model was validated through the prediction of lipoprotein profiles of several transgenic mouse models commonly used in cardiovascular research. Finally, the framework was employed for longitudinal analysis of the profiles of C57Bl/6J mice following a pharmaceutical intervention with a liver X receptor (LXR) agonist. The multifaceted regulatory response to the administration of the compound is incompletely understood. The results explain the characteristic changes of the observed lipoprotein profile in terms of the underlying metabolic perturbation and resultant modifications of lipid fluxes in the body. The Murine Lipoprotein Profiler (MuLiP) presented here is thus a valuable tool to assess the metabolic origin of altered murine lipoprotein profiles and can be applied in preclinical research performed in mice for analysis of lipid fluxes and lipoprotein composition.


Assuntos
Cromatografia Líquida/métodos , Perfilação da Expressão Gênica/métodos , Lipoproteínas/sangue , Lipoproteínas/química , Modelos Biológicos , Mapeamento de Peptídeos/métodos , Animais , Simulação por Computador , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
18.
Cell Mol Life Sci ; 71(8): 1453-67, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24196749

RESUMO

The hepatic glucose-sensing system is a functional network of enzymes and transcription factors that is critical for the maintenance of energy homeostasis and systemic glycemia. Here we review the recent literature on its components and metabolic actions. Glucokinase (GCK) is generally considered as the initial postprandial glucose-sensing component, which acts as the gatekeeper for hepatic glucose metabolism and provides metabolites that activate the transcription factor carbohydrate response element binding protein (ChREBP). Recently, liver receptor homolog 1 (LRH-1) has emerged as an upstream regulator of the central GCK-ChREBP axis, with a critical role in the integration of hepatic intermediary metabolism in response to glucose. Evidence is also accumulating that O-linked ß-N-acetylglucosaminylation (O-GlcNAcylation) and acetylation can act as glucose-sensitive modifications that may contribute to hepatic glucose sensing by targeting regulatory proteins and the epigenome. Further elucidation of the components and functional roles of the hepatic glucose-sensing system may contribute to the future treatment of liver diseases associated with deregulated glucose sensors.


Assuntos
Metabolismo Energético/fisiologia , Glucoquinase/metabolismo , Glucose/metabolismo , Homeostase/fisiologia , Fígado/fisiologia , Redes e Vias Metabólicas/fisiologia , Modelos Biológicos , Acetilação , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Humanos , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo
19.
PLoS Comput Biol ; 9(8): e1003166, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935478

RESUMO

The field of medical systems biology aims to advance understanding of molecular mechanisms that drive disease progression and to translate this knowledge into therapies to effectively treat diseases. A challenging task is the investigation of long-term effects of a (pharmacological) treatment, to establish its applicability and to identify potential side effects. We present a new modeling approach, called Analysis of Dynamic Adaptations in Parameter Trajectories (ADAPT), to analyze the long-term effects of a pharmacological intervention. A concept of time-dependent evolution of model parameters is introduced to study the dynamics of molecular adaptations. The progression of these adaptations is predicted by identifying necessary dynamic changes in the model parameters to describe the transition between experimental data obtained during different stages of the treatment. The trajectories provide insight in the affected underlying biological systems and identify the molecular events that should be studied in more detail to unravel the mechanistic basis of treatment outcome. Modulating effects caused by interactions with the proteome and transcriptome levels, which are often less well understood, can be captured by the time-dependent descriptions of the parameters. ADAPT was employed to identify metabolic adaptations induced upon pharmacological activation of the liver X receptor (LXR), a potential drug target to treat or prevent atherosclerosis. The trajectories were investigated to study the cascade of adaptations. This provided a counter-intuitive insight concerning the function of scavenger receptor class B1 (SR-B1), a receptor that facilitates the hepatic uptake of cholesterol. Although activation of LXR promotes cholesterol efflux and -excretion, our computational analysis showed that the hepatic capacity to clear cholesterol was reduced upon prolonged treatment. This prediction was confirmed experimentally by immunoblotting measurements of SR-B1 in hepatic membranes. Next to the identification of potential unwanted side effects, we demonstrate how ADAPT can be used to design new target interventions to prevent these.


Assuntos
Biologia Computacional/métodos , Tratamento Farmacológico , Modelos Biológicos , Fenômenos Farmacológicos , Animais , HDL-Colesterol/análise , HDL-Colesterol/metabolismo , Hidrocarbonetos Fluorados/farmacocinética , Hidrocarbonetos Fluorados/farmacologia , Lipoproteínas VLDL/análise , Lipoproteínas VLDL/metabolismo , Fígado/química , Fígado/metabolismo , Receptores X do Fígado , Camundongos , Camundongos Endogâmicos C57BL , Método de Monte Carlo , Receptores Nucleares Órfãos/agonistas , Fenótipo , Reprodutibilidade dos Testes , Sulfonamidas/farmacocinética , Sulfonamidas/farmacologia , Triglicerídeos/análise , Triglicerídeos/metabolismo
20.
J Clin Endocrinol Metab ; 109(2): 389-401, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37690115

RESUMO

CONTEXT: Glycogen storage disease type Ia (GSDIa) is an inborn metabolic disorder characterized by impaired endogenous glucose production (EGP). Monitoring of patients with GSDIa is prioritized because of ongoing treatment developments. Stable isotope tracers may enable reliable EGP monitoring. OBJECTIVE: The aim of this study was to prospectively assess the rate of appearance of endogenous glucose into the bloodstream (Ra) in patients with GSDIa after a single oral D-[6,6-2H2]-glucose dose. METHODS: Ten adult patients with GSDIa and 10 age-, sex-, and body mass index-matched healthy volunteers (HVs) were enrolled. For each participant, 3 oral glucose tracer tests were performed: (1) preprandial/fasted, (2) postprandial, and (3) randomly fed states. Dried blood spots were collected before D-[6,6-2H2]-glucose administration and 10, 20, 30, 40, 50, 60, 75, 90, and 120 minutes thereafter. RESULTS: Glucose Ra in fasted HVs was consistent with previously reported data. The time-averaged glucose Ra was significantly higher in (1) preprandial/fasted patients with GSDIa than HV and (2) postprandial HV compared with fasted HV(P < .05). A progressive decrease in glucose Ra was observed in preprandial/fasted patients with GSDIa; the change in glucose Ra time-course was directly correlated with the change in capillary glucose (P < .05). CONCLUSION: This is the first study to quantify glucose Ra in patients with GSDIa using oral D-[6,6-2H2] glucose. The test can reliably estimate EGP under conditions in which fasting tolerance is unaffected but does not discriminate between relative contributions of EGP (eg, liver, kidney) and exogenous sources (eg, dietary cornstarch). Future application is warranted for longitudinal monitoring after novel genome based treatments in patients with GSDIa in whom nocturnal dietary management can be discontinued.


Assuntos
Glucose , Doença de Depósito de Glicogênio Tipo I , Adulto , Humanos , Glucose/metabolismo , Doença de Depósito de Glicogênio Tipo I/metabolismo , Fígado/metabolismo , Glucose-6-Fosfatase/metabolismo , Glicemia/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa